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A CONING MOTION APPARA TUS FOR HYDRODYNAMIC MODEL
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LT David C. Johnson
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Abstract

As part of continuing research into the flow about slender bodies of revolution, a con-
ing motion apparatus for hydrodynamic model testing was built and demonstrated. This is
the first known use of a rotary balance apparatus for external flow hydrodynamic
applications. The rotary rig allows for captive model testing with simultaneous roll and yaw
components, and with non-planar cross-flow effects. Coning characterizes the non-planar
nature of a general motion that cannot be constructed from contributions due to any planar
motions.

Demonstration tests were conducted with a length/diameter = 9.5, body of revolution.
Force and moment measurements were taken via an internally mounted, 6-component bal-
aice. capable of capturing all six force and moment components acting on the model. The
tests covered coning angles to 20'. spin rates to 200 rpm. and free stream velocities to 30 ft/s.
Reynolds number based on model length ranged from 4.04x106 to 6.06x 106. Cross-flow
Reynolds number based on body diameter extended from 1.5x 10' to 3.0x 10', covering flow
regimes near the transition from laminar to turbulent separation. The non-dimensional forces
and moments generally show a non-linear variation with spin rate for coning angles greater
than 14". The measured out-of-plane force was significant, reaching a magnitude of 30% of . 4
the in-plane force. Experiment data correlated fairly well with numerical predictions (using
laminar separation criteria).

Thesis Supervisor: Dr. J. E. Kerwin, Professor of Ocean Engineering

Thesis Reader: Dr. H. K. Kytomaa, Assistant Professor of Mechanical Engineering
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LIST OF NOMENCLATURE

Bodiy Fixed Axis System

xFuI

X,K

z,w,r
Z,N

V

Center of Rotation~

ct ModelRoainAs

x

Zo

AXES

Body Fixed:

" X the longitudinal axis, directed from the after to the forward
end of the model

* y the transverse axis, directed to starboard

" Z the normal axis, directed from top to bottom
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Tunnel Fixed:

* X0  the fixed longitudinal axis, colinear with the tunnel longitudi-
nal centerline.

" YO the fixed transverse axis, perpendicular to x. in a horizontal
plane, directed to starboard

" zo  the vertical axis, directed downwards

COORDINATES AND DISTANCES

" xI, V'8, jq coordinates of the CB relative to body axes

SXG, YG, ZG coordinates of the CG relative to body axes

- Q, coning angle, measured from the x0 axis to the x axis

FORCES AND MOMENTS

• X, Y, Z force components relative to body axes, referred to as longi-
tudinal, side, and normal forces respectively

• K, M, N moment components relative to body axes, referred to as rol-
ling, pitching, and yawing moments, respectively, referenced
to the COR

W weight of the model; W = mg

" B model buoyancy force

INERTIA CHARACTERISTICS

• I,. ly. Iz  moments of inertia of the model about the x, y, and z axes,
respectively

. m mass of model

SPECIFIC POINTS ON BODY

" CB center of buoyancy of model

. CG center of mass of the model
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- COR Center of rotation, the reference point for all measured and
calculated forces and moments, located 11.31 inches aft of
the model bow, on the longitudinal axis

- BMC Balance moment center, .895 inches aft of the COR, on the
model longitudinal axis

VELOCITIES

0 U, v, w components along body axes of velocity of origin of body
axes relative to fluid

* p, q. r angular velocity components relative to body axes x, y, z;
angular velocities of roll, pitch, and yaw

0 w0 model rotation vector in tunnel fixed axes; o = cou,

MISCELLANEOUS

* A model maximum cross sectional area; area projected onto y-z
plane

* p density of fresh water = 1.9348 slugs/ft3 (t=77"F)
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A CONING MOTION APPARATUS FOR HYDRODYNAMIC MODEL TESTING

IN A NON-PLANAR CROSS-FLOW

Chapter 1 Introduction

For many years, the primary goal of researchers in the motion dynamics field has been

to develop the ability to accurately predict the full-scale motions of vehicles. Even today,

with the powerful computational tools available, reliable motion predictions of vehicles in all

portions of the maneuvering envelope are not possible. Murray Tobak and Lewis B. Shiff

pointed out that the difficult problem is to correctly describe the relationship between the

aerodynamic reactions and the motion variables in the inertial equations of motion of an air-

craft [ 1] This same difficulty applies to the motion of hydrodynamic vehicles as well. For

slender body shapes with fin appendages, the problem is compounded by the complex wake

structure formed by the maneuvering vehicle. The vorticity shed by the hull and appendages

creates a wake field that interacts with the velocity distribution over the vehicle's surface.

This in turn effects the surface pressure distribution and thus, when integrated over the

body 's surface, the total force on the hull/appendage !ombination. It is this interaction that

prevents a closed-form analytic solution to the problem. .' , -

To further the understanding of the basic flow field about a slender body, the MIT

Marine Hydrodynamics Laboratory has been conducting experimental studies on slender

body of revolution configurations, both with and without fin appendages. Previous research

by Coney[2], Kaplan[3], Reed[4], and Shields[5], has focused on experimentally determining

the nature and strength of the vortical wakes shed from a body of revolution, both with and

without a single attached fin. Their test program included both force block measurements of
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fin force and moment as well as laser-doppler velocimeter (LDV) measurements for produc-

ing cross-flow velocity maps at different stations along the body and for determining vortex

strengths.

As both a continuation of the above past research and a step in a new direction, the goal

of this study is to construct and demonsirate a coning motion apparatus for hydrodynamic

model testing. The primary purpose of this research is to determine the forces and moments

on the model as a function of the coning rate. The need for the coning motion captive model

test will be developed from both flow field and mathematical model considerations.

1.1 Coning Motion

Coning motion can be described

as the continuous rolling motion

of the vehicle longitudinal axis

about the free-strealn velocity

vector. To generate such a

motion in the water tunnel, the

model is fixed to some type of

support system that can be

rotated at constant rotation speed V

about an axis that is parallel to Figure 1. Coning Motion

the free stream velocity vector of the tunnel. In accomplishing this, the model sees a

constant attitude with respect to the free stream throughout a rotation cycle. This is a

stead. coning motion as shown in figure I. The motion allows for combinations of roh

(p') and yaw (r') velocities simultaneously: p'= (cosot)o', r'= (sin a,)o'.
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In a coning motion study, the experimenter has control over six variables:

* V: free-stream velocity

* co: body rotation rate

* a: coning angle

* [ : sideslip angle

* 40: body roll angle

* d: perpendicular distance of the body reference point from the rotation axis

For this study, only three of the available variables were used, V, (o, and ax. The

sideslip angle. P. and the body roll angle. , were set = 0. No sideslip simplified the

experiment apparatus and simplified the motion for this test. The roll angle is only signifi-

cant for bodies with attached appendages. The reference point chosen for the experiment

is the center of rotation, therefore d = 0.

The choice of the parameter d has a significant impact on the actual inflow velocity

to the model. The reference point and the perpendicular distance from the rotation axis for

this experiment were chosen to minimize inertial force effects, as shown later in section

2.3.4 and Appendix B. To be completely standard, the reference point should be a function

of the body geometry (for comparison with other body shapes). The geometric reference

point is the body center of volume, located on the body longitudinal axis, .8 inches forward

of the center of rotation.

The coning motion .pparatus has been in use by aeronautic researchers since 1926.

For their purposes. the coning motion apparatus provided test data on aircraft maneuver-

ability at high angles of incidence and on aircraft steady state spin motion and spin recov-

er-. Later on. the mathematical model developed by Tobak and Schiff indicated that
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coning motion is one of the fundamental characteristic motions required for prediction of

conventional, nonspinning maneuvers. A good historical account of the development of

the coning motion apparatus and its employment at a number of test facilities around the

world is given in Reference [6].

1.2 Model Testing

Current hydrodynamic captive model testing comprises planar motion simulations,

mostly because of the facility limitations. Conventional captive model test types include:

• Straight tow tank or circulating water tunnel at a fixed angle of attack

* Straight tow tank or circulating water tunnel with an oscillator attached to the

model (i.e., planar motion mechanism)

* Rotating arm

All of these tests suffer two major deficiencies:

* Cross-flow velocity vectors along the body length lie in a plane

• No roll component of angular velocity (p)

The significance of these shortcomings can be seen by first looking at the non-planar

cross-flow effects and then the roll component effects.

1.2.1 Non-Planar Cross-Flow Effects

A body of revolution with no attached appendages in a planar cross-flow will

exhibit four basic flow types, depending on the angle of attack and Reynolds number.

Shown in figure 2 are the four flows along with the normal and side force experienced

by an ogive-cylinder at varying angles of attack [7].
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The cylinder sheds symmetric vortices with no resultant side force for angles of

attack up to the onset angle of attack where the flow transitions to steady asymmetric

vortex flow with substantial side force, and then to wake-like flow with minimal side

force.

S CI NORMAL SIDE

V. VORTEX VORTEX FRI FLOW
FREE FLOW

V_ W S. YMMETRIC SYMMETRIC VORTEXVORTEX FLOW FLOW 4
V_ STAD STEADY ASYMMETRIC

-ASYMMETRIC

VORTEX FLOW VORTEX FLOW

V. -WAKE-LIKE FLOW WAKE-UKE FLOW [O T

ANGOLE Of ATTA'/CK

A

Figure 2. Flow types and force regimes for increasing angle of atack

on ogive-cylinder.

Experiments conducted at MIT by Shields[5J on a submerged body of revolution

at a Reynolds number of approximately 6 x 106 based on model length and at moderate

angles of attack (up to 14") demonstrated that the body shed symmetric vortices for all

angles of attack. The plot of perturbation velocities for a= 14" shown in figure 3 clearly

depicts the two symmetric body vortices. The symmetry here is a direct result of the

planar cross-flow that the model is exposed to.
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Some work has been -
0.0 : " , ", -, ; . • .

accomplished on captive* ************

models subjected to non-

planarcross-flows. Visual %., ,

studies done by Tobak, " . .,

Schiff, and Peterson [8] on a

bodv of revolution in coning ,. . ,

motion clearly portrayed the " .... ''t*A • ..

asymrmetric vortex field shed . . . .0 0 P I Y I I

bv the body in the non-planar
" " . 9 9 . 4 9 9 9 I P 9 9 9 9 9

cross-flowx. ." - .

Figure 3. Unappended body of revolution, o: = 14'.

More recently, Nielsen Engineering and Research (NEAR) has run a coning

motion case with their SUBFLO, vortex cloud computer code and predicted similar

results [9]. The preliminary results are shown in figure 4 for a length/diameter = 9.5

body of revolution in coning motion with a=20". The predicted out-of-plane force (i.e.,

side or Y force) was 50% of the normal (Z) force value.
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Current model test techniques cannot 0 0

capture this effect because of their pla-

nar flow limitations. Since actual sub- -/l,-. 33

mersibles rarely operate in a planar

cross-flow, the coning motion test

provides a more realistic test condition 0 0
00 0

for obtaining coefficient data. Coning 1 0
0 0

characterizes the non-planar nature of a 5

x/Ls. 59

general motion that cannot be con- 9...

structed from contributions due to any

planar motions. The presence of the

non-planar motion is a prerequisite for 0 ° 0

the existence of the coupling terms that o/ 0 0 .0
0

are so important in accurately describing 5 55

the general motion of a six degree of X I X X)
X

freedom body (e.g., yaw-pitch cou-

pling).

Figure 4. L/D = 9.5 hull in coning motion;

c=20", p' = .82, r' = .30.

1.2.2 Roll Component Effects

The Taylor Series expansion approach that is described in section 1.3 produces

many coefficients with a roll component, p'. In the past, these hydrodynamnic deriv-

atives have been ignored, mostly because of the inability to obtain model test data for
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these derivatives. Three pertinent examples are the linear derivatives, y' , K' P and

N'P, for which there is little or no experimental results available [10]. K'P, the linear

roll damping, is believed to be important on the basis of theory, and has been shown in

model tests of missiles to be an even function of angle of attack and to vary considerably

for angles of attack above 5" [10].

There are two classes of higher order hydrodynamic derivatives involving roll that

are of importance:

* Nonlinear variations of roll damping rate with angle of attack:
K'_, K ,. K'qq

* Nonlinearities associated with cross-flow drag:

rr" rrr" 'rrM r rrr

The nonlinea roll damping terms will have a much greater influence on an axisymmet-

tic body with an attached fin than the body used in this experhient. The cross flow drag

terms are associated with the nonlinear variation of the cross force with the model angle

of attack.

1.3 Hydrodynamic Math Model

The forces and moments acting on a submerged vehicle are generally non-linear

functions of the linear and angular displacements, velocities, and accelerations of the

vehicle and the motion of the control surfaces relative to the fluid [11]. Ideally, the func-

tional relationship between the forces and moments and the motion and control parameters

would be known and used directly in forming the equations of motion. Unfortunately, the

functional relationship is generally unknown. Without this relationship, the function is

expressed as a Taylor Series expansion with respect to the rectilinear and angular velocity
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components about a chosen condition. For this study, the chosen condition is straight and

level operation at the instantaneous surge velocity, u(t). Appendix A details a 3 d order

Taylor Series expansion and simplification for representative forces and moments.

For any mathematical representation of a physical process, the validity of the mathe-

matical model depends on whether the assumed form of the equations of motion ade-

quately represent the physical hydrodynamics and whether the resulting coefficients are

realistic. It is not the purpose to this study to validate the use of a Taylor Series expansion

as a mathematical modeling tool for this case, but rather to present the framework for the

use of the force and ,nonent data obtained from experiment. The interrelation of the math-

ematical model, theoretical work, and model test data is best described by figure 5. The

experimenter's purpose is to provide the experimental results (e.g., non-dimensional forces

and moments) and the understanding of the dynamics involved to validate the theoretical

work, thereby improving the comprehension of the actual physical processes at work.

Theoretical

Hydrodynamic FCharacteristic 1 Determination Calculations
Math Motions Hydrodynamic
Model Information Model

Testing

Figure 5. Mathematical model process.

The Taylor series expansion is advantageous from the standpoint that it is numer-

ically efficient and provides a convenient structure for correlating data. However, it has
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the disadvantage in that truncation of the series to a certain order limits the range of

applicability from the expansion point. Current motion simulators require expansions up

to 4" order to adequately model yaw-pitch coupling and 5h order for slender body lift. In

addition to the algebra-ic burden of the high-order expansion, for the formulation to be use-

ful, the coefficients must be accurately determined.

A simplified expansion for the X force equation, retaining only linear terms is as

shown:

X' = X' + (X' v' +X'i w'+X 'np' +X'qq' +X'rr') +...

The typical coefficient of a linear term in the expansion takes the form of a partial

derivative of a force or moment component with respect to a variable evaluated at the orig-

inal condition: for example.

The form of the hydrodynamic formulation is determined by the coefficients resulting from

the expansion. The coefficients determine the characteristic motions that must be evalu-

ated, either analytically or experimentally. Because of the inability to analytically deter-

mine the coefficients, model testing, and more recently, full scale ship trials have been

used for determining not only the magnitude of the coefficients, but also which coefficients

are of primary importance.
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Chapter 2 Description of Test Apparatus

All testing reported in this paper was performed in the MIT Marine Hydrodynamic

Laboratory's variable pressure water tunnel.

2.1 Model

,--- Balance Sleeve

0 2.695 0 0

L 4.750 - 3.650 La
Lpmb Dimensions in Inches

Figure 6. Coning Motion Model

The model used for the experiment has the following characteristics:

• Length/Diameter 9.5

* Length 23.50 inches

* Diameter 2.695 inches

* Weight 10.45 lbs

* Buoyancy 3.23 lbs

* % Parallel Midbody 39.6%

• Length Forward 4.85 inches

• Length Aft 10.25 inches
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The model shape shown in figure 6 is the standard L/D = 9.5, body of revolution

used for previous studies carried out at MIT (Ref. (3], [4], & [5]), Stevens Institute of

Technology, Davidson Laboratory, and Nielsen Engineering and Research (Ref. [9]). The

shell of the model consists of three anodized aluminum pieces which mate to the stainless

steel sleeve. The sleeve is mounted to the shell of the balance itself. This sleeve is the only

support for the model shell and allows the balance to sense the forces and moments

experienced by the model. Void spaces in the assembly were filled with grease to prevent

water leakage into the model. At the aft end of the model, some clearance from the sting

was allowed to provide for model deflections. This prevented "shorting out" the balance,

but also allowed some water to enter the rear cavity. The inertial force contribution fromi

this water was calculated as negligible. The next section describes the balance itself and

its waterproofing

2.2 Balance and Sting Assembly

SH-.895 inches
6-Component Batance I i BMC Convair Sting

-Cent of Rototon 'Waterproof Sleeve

Figure 7. Coning Motion Model and Balance Assembly

Unlike past models, the present body of revolution is equipped with an internally

mounted, 6-component balance for measuring hydrodynanic loads (figure 7). The balance
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provided by General Dynamics, Convair Division is a 1000 pound rated balance, calibrated

to 150 lbs, and adapted for water testing. The balance was fit inside a waterproof sleeve,

with the strain gage bridge wires routed out the back through a watertight seal. The bal-

ance is hollow and allows for wires from the future fairwater force block to pass through

the balance and out with the balance wires. Great care was taken to ensure that the fine

wires coming from the balance were adequately waterproofed. Tygon tubing covered the

wires from the balance to their exit out the water tunnel.

The balance consists of nine strain gage bridges:

0 2 Normal force bridges

0 2 Side force bridges

0 2 Roll bridges

• 3 Axial bridges

Only six of the bridges are used at one time for producing force and moment readings.

The preferred set of bridges was determined during the calibration done by Convair. Cali-

bration of the balance is discussed in Chapter 3.

2.3 Tunnel Installation

A considerable portion of this project was spent on the design, selection, building

and installation of components. During the design phase, emphasis was placed on simplic-

ity, reliability, and cost. The resulting system is shown in figure 8.
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CONING MOTION APPARATUS
IN MIT WATER TUNNEL

TurvinVanesShaft Rheoder
t.o601:1 Dolt Drive

Id~ot t60 Ring sip Rings

e HP 1160 RPM Motor

Drive Shaft -

Figure 8. Coning Motion Apparatus

2.3.1 Calculations

Because of the first time nature of this type of test in the hydrodynamics field, cal-

culations of the various loads on the system had to be carried out. The calculations were

integral to the component selection and design process. These estimates included:

* Model drag and torque at maximum tunnel velocity and rotational speed

" Model and shaft drive system speed variation at different rotational speeds

for a "free" system

" Shaft loads and system resonances

" Bearing loads and wear allowances
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2.3.1.1 Required Torque

The model assembly drag and torque were calculated by modelling the body as a

cylinder and the sector as a flat plate. A 2-D strip theory approach was taken, where

the model and sector were divided into small strips, and the drag calculated for a

cross-flow velocity equal to (or, for each strip with a drag coefficient based on

Reynolds number:

D,= CD( P(wi)}4

A, is the area of each strip. Torque was then found from summing up the drag contrib-

utions from each strip:

'I

T" = rD,

Because of the off-center weight effect that the model and sector produced, the

weight torque had to be added to the hydrodynamic torque. 'Neight torque was calcu-

lated using the same sectioning as in the hydrodynamic case and a density of water for

the model and a den sity of .3 lb/in' (p ,,,) for the sting and sector:

n(p. V)r,= I

where V, is the strip volume. The resultant values for the most limiting case, c, =

20', v = 30 ft/s, o = 200 rpm, were ; = 14.9 ft-lbs, t, = 5.9 ft lbs. Finally, the mini-

mum required HP was found to be:

HP = = .79 HP
550
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Later testing proved two problems with ttis result. The first was the calculation

was carried out for the preliminary sector configuration, which was more streamlined

than the final design. Second, the effect of the high free stream velocity (when com-

pared to the w- contribution) was neglected. The addition of the V term caused the

sector to act as an inefficient foil at a varying angle of attack along its span (tunnel

radius). Later attempts to model this correctly produced a very flat torque characteris-

tic curve and also proved wrong. The effect of this error was the limitation of approx-

imately 135 rpm foi the model at 20', 200 rpm, and 30 ft/s. 200 rpm could only be

achieved for the model at 20" vhen the free stream velocity was reduced to

approximately 10 ft/s. This problem was later fixed by placing a wing attachment on

the end of the sector. The attachment was designed for a 2 to 3 degree a at 200rpm

and 30ft/,, The wing waq a large success, providing enough lift to autorotate the

model at 175 rpm (for V = 30 ft/s)! With the motor assisting, the model easily

achieved 200 rpm.

2.3.1.2 Speed Regulation

For rotary balance experiments, it is important to maintain a constant rotation

rate over a cycle of data taking. To check the worst case condition, a simple calcula-

tion was done for a freely spinning system (i.e., no speed regulation). The model and

sector were lumped together as an off-center weight of 26 pounds at a radius of

gyration equal to 4.24 inches. The main sheave polar moment of inertia was calcu-

lated and later obtained from the manufacturer. All other polar inertia contributions

were neglected on the assumption that they were small.

For this lumped system the total J was:
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J,o,,= (J,,, + J,,,,) =4366in2
-lbs

The following relatr;ins were used to calculate the rpm variation:

d(H,)" where H,, =X m,rw , the angular momentum for this case.

Substituting: t= mir, d - = J o- dt

Solving for the angular acceleration (0:

o=-} = A sin(or) where, o, =-20.9rad/s

Finally, the angular speed variation was found from integrating this expression:

0W= c/t _-A cos((oo t ) + W,(0,

Substituting in the numbers for 200 rpm (20.9 rad/s) and t, = 10 ft-lbs:

(o = -. 507 cos(20.9t) + 20.9

This gave a worse case variation of - 4.8 rpm over I revolution. The advertised speed

regulation for the motor would give a max variance of- 2.2 rpm over I cycle (1%).

To avoid all of this, the main sheave was counter weighted during the inertia and data

runs.

2.3.1.3 System Torsional Resonance

Unknown loads on the model-sector combination could result in a resonant

vibration in the system. To investigate this, the torsional resonance frequency was
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calculated for varying J's and shaft "stiffness" constants (K,). The system was mod-

eled as a two disk, torsional vibratory system, shown in figure 9. The model/sector

combination accounted for J,, the main sheave, J2

J

11 1

Figure 9. Torsional Vibration Model

The equation for the resonant frequency was derived starting with Lagrange's

equations with no forcing function:

Equation of motion: dtI -I -- =0 ,where L T'-V

" =( + ( }J0: (Kinetic co-energy)

1  01-0 2)P2 (Potential energy)
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Assuming an undamped system, the angles take the harmonic form:

0, =Ae *ji W

02 = A2e t)OW

The resulting equation to solve is:

[J, [l[a,1
[0 _.wA1+ K, -KJ,.I

Rearranging:

0-K, K,1FA,=ol

L K, 1;2K]LAi Lo0
The characteristic equation is: det[B] = 0. This leads to the desired relation for (o:

W = [ JK§>j , ,where K, =9 (d 4-d

d0 = outer shaft diameter, d, = inner shaft diameter, I = shaft length, G = 12 x 106 psi

for steel, and g = 386 in/s 2. For the final system, the torsional resonance frequency =

50 Hz (3000 rpm), which is much higher than the filter cutoff frequency of 3 Hz (180

rpm) and the maximum shaft rotation rate (200 rpm).

2.3.2 Modifications

The MIT variable pressure water tunnel required significant modifications before

the study could be undertaken. The primary modifications necessary were:

" Boring and sleeving the turning vanes to allow for the shaft installation

" Modifying the forward nacelle to accept "DU" type bushings for supporting

the shaft, model, and sector in the test section
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" Aligning and welding the bearing housing mount plate on the tunnel exterior

" Installing a motor and drive system for rotating the model and shaft

Special consideration was given to the rigidity of the system since unknown reso-

nances in the model-sting-drive system would have a disastrous effect on the data. The

forward nacelle is rigidly mounted to the tunnel as is the exterior bearing housing

assembly. The precautions proved to be worthwhile; the apparatus showed only small

amplitude vibrations up to maximum system capabilities.

2.3.3 System Characteristics

The basic system characteristics are:

a Model angle of attack 0* to 20" in 2" increments

0 Rotations speed 0 to 200 RPM, both directions

0 Tunnel water velocity 0 to 30 ft/sec

• Rotary speed regulation to ± 1% for 95% change in load

a Drive motor: GE 2 HP DC shunt wound, 1200 rpm, variable speed

• Drive system: 2-belt drive with drive ratios from 5.59:1 to 8.2:1

0 50 channel (rings) capability

Model rotation rate was derived for similitude in non-dimensional roll, p', with

full scale vessels. Using the conventions in Appendix A, p' = 1.37 for 200 rpm at U =

30 ft/sec. The coning angle limit of 20 degrees is based on tunnel test section dimen-

sions.
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2.3.4 Test Section Installation

There are three contributions to the forces and moments measured by the balance

in the model (see figure 10). The first is from the inertial forces and moments of the

model itself, which vary with the model attitude and rotation speed The second is from

gravity (model weight) and buoyancy, which will vary cyclically over a revolution.

Finally, there is the contribution from the hydrodynamic loads. The desire to reduce or

eliminate all but the desired hydrodynamic forces had a great effect on the installation

design.

Grcvit y: Periodic

Inertia: Constant
H ydrodyn am ic: Constont

Weight (or Buoyancy)

Force
or

Moment Hydodynomic

Ineftiol

Time

Figure 10. Forces measured by the balance for constant rotation rate

A close-up of the model in the test section is shown in figure 11. The model cen-

ter of rotation was chosen such that the model center of gravity would be as close to
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Center of ,-atuon

11.310 aft-ter Support 4

z- Toot Section Wall

46.0
Dimensions in Inches

Figure 11. Coning Motion Apparatus in the Test Section

the model rotation axis as possible. This reduces the inertial force contribution. Addi-

tionally, reducing the differences in the model moments of inertia also decreases the

body inertial moments (see Appendix B). As it turned out, the inertial forces were very

small compared to the hydrodynamic loads.

2.4 Data Acquisition and Reduction System

The data were taken with the stand-alone, microcomputer-based, data acquisition and

reduction system shown in figure 12. The components will be described by their func-

tional grouping.
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Figure 12. Data Acquisition and Reduction Systeni

2.4.1 Instrument Group

The instruments consisted of the 6-component balance, tunnel differential pressure

(DP) cell. and shaft encoder. Their basic functions were as follows:

" Balance: 9-element (strain-gauge bridge), internal balance used for measur-

ing the forces and moments experienced by the model

" DP Cell: Used for measuring test section velocity

" Shaft Encoder: 12 bit, natural binary encoder (BEI model C-14) used for

model rpm, data trigger, and shaft position for static tests. The encoder out-

puts a 0 to +5 volts square wave signal at frequencies from 1/revolution to
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2048/revolution (211). The 1/rev and 32/rev signals were used for shaft

position, the 32/rev for triggering, the 512/rev for model rpm (computer

input), and the 1024/rev for model rpm (counter input).

2.4.2 Amplifier/Filter Group

Signal amplification and filtering was accomplished by two sets of instruments:

• 3-B Series (Type 3B-16): A nine module block of signal conditioners and

filters that filter and amplify the balance outputs to a standard ± 5 Volt ana-

log signal. The modules had an upper cutoff frequency of 3Hz for filtering

out high-frequency noise (a characteristic that caused considerable trouble

later).

" Davtronix 9000 Series: Two modules were used: the strain gauge condi-

tioner (9170) for boosting the DP output to a ± 5 Volts range, and the fre-

quency to voltage module (9140) for converting the encoder 512/cycle

output to a 0 to +5 Volt analog signal for model rpm.

2.4.3 Computer Group

The heart of the system was the IBM PC/XT personal computer. The PC had a

MetraByte Dash 16F analog to digital (A/D) board installed for acquiring and converting

the balance voltages to counts. The Dash 16F also read in outputs from the tunnel dif-

ferential pressure (DP) cell and the shaft encoder. The analog portion of the board was

set for a resolution of 2.44 millivolts (409.6 counts/volt). The board had a conversion

time of approximately .0417 millisec./channel using direct memory access (DMA). This

was a very important point which will be discussed in chapter 3.
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The Dash 16F also was capable of reading in a digital signal through its digital

input ports. Thi feature enabled the encoder to act as a trigger, using software to deci-

pher the digital word read in from the port.

The PC/XT controlled the data taking process through software. Standard Project

Athena laboratory routines were used for controlling the analog and digital sampling.

The routines were incorporated into user-developed FORTRAN code. The major draw-

back to using the FORTRAN routines was the increased time required to obtain an ana-

log sample. The experimentally determined sample time was approximately .052

msec/channel, an increase of .0103 msec/channel over the calculated rate.

Finally, the PC stored and processed the averaged component (DC) of the signal

and on-line presented the force and moment measurements. The time-varying signal

was stored on magnetic media for later off-line processing.

Not connected to the computer, but used for setting the rotation rate was the HP

(Hewlett-Packard) counter shown in the figure. The counter read directly off the shaft

encoder and gave an accurate counts/sec output, which was then converted to RPM.

2.4.4 Slip Rings

The balance signals (millivolts) were taken from the rotating model reference

frame to the fixed data system frame via a 50 ring slip ring assembly. The slip ring

assembly (Airflyte model DAY-491-50) used was specifically designed for strain gauge

measurements. As the experiment showed, the rings were very "quiet", passing little

electrical noise to the amplifier/filters.

Page 34



Chapter 3 Test Procedure and Tare Measurements

3.1 Balance Calibration and Check-out

The 6-component balance calibration was accomplished at Convair, prior to its

installation in the model. A precise calibrating body was fit over the balance and then the

assembly put in a calibration fixture. The fixture allowed for the accurate placement of

loads and moments on the body, with corrections for deflection being taken into account.

The calibration results were placed in a two inch thick binder containing information nec-

essary for using the balance. The information included:

* R-cal readings for all 9 channels (shunt resistor equivalent)

* Balance constants foi the different combinations of roll moment and axial force

gauges

* Plots of the response of the balance vs applied lead (for applied axial, normal,

and side force and roll moment)

The R-cal readings are merely voltage (counts) outputs for the balance channel being

tested, with and without the shunt resistor switched into the circuit. The A voltage (counts)

allows a second site to establish calibration ratios between the counts read on their A/D

system and the equivalent readings on the Convair test bench. In this experiment, the ratio

was set as:

R-cacnv.,,

Ratio = = 2.45
R-calwr

The ratio varied by channel, however, the variance was small. The ratio calculated above

shows that the Convair A/D system had approximately a factor of 2.45 better resolution

than the system used in this study.
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The balance constants were not used because of the simplified linear algorithm cho-

sen for converting the balance readings to forces and moments. Several methods were

available for doing this conversion, but the linear method was chosen for its simplicity and

speed. Other methods available are described in References [12] and [13].

3.1.1 Data Reduction Model

Stevens Institute of Technology, Davidson Laboratories, developed the linear, 6"'

order method implemented in this study. In developing this linear model, Stevens had to

fit the Convair calibration data and then compare the linear model performance against

the more complex Convair algorithm.

The first step is to compute the 6x6 calibration matrix. The goal is to obtain a

matrix of coefficients that accounts for the imperfections in the balance construction,

which appears in the fonn of cross-talk, and yields the correct force vector. In other

words, for a sinple single, in-plane force, such as a normal force applied at the reference

center, the detected force by the balance will consist of contributions from all 6 chan-

nels:

6

Z = , ar,

where a, are the calibration coefficients and r, are the balance readings from the six

channels. For a generalized load application, the matrix equation is:

L= [AIR
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where L is the load vector, [A] is the desired coefficient matrix, and R is the correspond-

ing balance reading vector. During the calibration done at Convair, several load vectors

were applied while recording the associated balance reading vectors. This resulted in

the following, overdetermined system:

Z Z 7. a,, a,2 a, 3 a,4 a,, a,6 NI, NI

MI  M. t , a2, a 3 a2,4 a25 a26 N2, N2,

y ..... Y a31 a32 a33 a4 a3, a6 Y .YI,.
N, N, a4, a4, a, 3 a. a4, a.6 Y2, Y2.

K, K a,, a _ a5 3 a 4 a 5 a.,6 R21 R2

A X,, a6a, a 62 a6, a. 0 65 a6f " .X l I X I j

where the subscripts refer to the loading condition. This equation can be rewritten as:

[R] T [A] T = [L] T

The solution to this system is found by utilizing a least squares approach. This is equiv-

alent to mininizing the Euclidean norm of

[R] T [A] T - [L] T

Davidson Lab has a standard program which, given a file containing the loads and

results, carries out both the linear least squares fit and the matrix inversion to get the

final coefficient matrix, [A] [12]. This matrix was then used to convert the balance

readings obtained from the experiment into the force and moment data presented.

3.1.2 Balance Operation

The next logical step was to verify the correct operation of the balance. Successful

completion of this portion of the experiment would give:

A check of the data reduction method
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* The balance axis convention

" A check of the data taking system

• Model weight and center of gravity

3.1.2.1 Weight Calibration and Axis Convention

The first experiment run was the application of known weights on the balance.

Stevens Institute provided a collar attachment that fit around the stainless steel sleeve

and allowed weight placement with the model set at a, = 0 degrees and roll = 0

degrees. Weights were systematically placed on the collar and readings taken using

the static FORTRAN code developed for these runs. Applied loads varied from .4 to

12 pounds. The resultant Z force was approximately 1.8 times the applied load. After

much searching, the error was found in the coefficient matrix associated with refer-

ence to the center of rotation. The transpose of the coefficient matrix had been used,

causing the Z force error. The error was corrected, allowing the next step to proceed.

The sign convention for the axis system was checked by first setting the model

to 0. 0" and taking a measurement. This measurement became the "zero" file and

would be subtracted from the subsequent reading. Next, a known (in sign only, not

magnitude) force or moment was applied to the model and a set of readings taken.

The difference between the second reading and the zero file produced the read sign of

the force (or moment). The test showed the following axis convention:

• X: positive out model bow

* Y: positive out model port side

• Z: positive down

• K: positive for model starboard side up
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* M: positive for model bow down

* N: positive for model bow to port

(Bold typeface indicates non-standard sign convention.) To avoid further confusion,

the axis convention above was adopted for the test readings only. The test measure-

ments would be presented as follows:

* Dimensional forces and moments: above, non-standard convention

* Non-Dimensional forces and moments: SNAME axis convention as pres-

ented in the list of nomenclature.

3.1.2.2 Model Weight and CG

With the axis convention determined, the model weight and center of gravity

were established. Two types of experiments were run, first, an inclining experiment.

second, a simple set of roll experiments. In thc first experiment, the model is set at 0*

(pitch or (x,), 0* (roll). a set of zeroes taken, and then inclined 2 degrees at a time (in

pitch) with readings taken at each point. The weight is found from the relation

X = W sin(ct,)

The X force is plotted against sin(co,). The slope of the plot is the model weight. The

slope gave the model weight as = 10.3 lbs. Though the data plotted very linearly, the

maximum X force measured was = .35 pounds. More emphasis was placed on the

results of the following roll tests.

The next experiment consisted of a set of roll runs. First, the model was placed

at either 0', 0" or 0', 90 (degrees roll angle). A set of "zeroes" were taken. Then the

model was rolled 180 degrees and again sampled. The resulting readings gave the

following results:
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AM AK
000, 180 Test- Z = 2(Weight), k. = 2-), Y'S 2m'

AN AK(

090, 270 Test: Y = -2(W), X& = -±, Z' e ±

Giving numbers:

• W = 10.45 pounds

* XI .4 inches forward of center of rotation

• Y "s Z , -= 0

As a measure of some confidence, the test data was re-reduced using the coefficient

matrix referenced to the balance moment center (BMC). The results were nearly iden-

tical. Additionally. the different components of the balance gave consistent results

(i.e.. Y force determined W = Z force determined W).

3.1.2.3 Temperature Effects

During this check-out phase, the temperature sensitivity of the balance was dis-

covered. Because the balance is a large mass of metal, the temperature of the balance

took some fixed time to stabilize. Even the small heat generated by energizing the

gauges affected the balance outputs (siynificantly). A quick experiment was run

where, with the model in air, the balance was energized and readings taken every few

minutes. The first 15 minutes produced drifts of 2.5 lbs Y, 1.1 lbs Z, 1.9 in-lbs K, and

1 in-lb M. Over the next 30 minuies, the drift fMI off considerably.

To counter this "warm-up" effect, the strain gauges were left energized during

the entire experiment. The temperature sensitivity caused problems in the full-up data

runs later because of the tunnel water temperature rise over run time.
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3.2 Test Procedure

3.2.1 Test Logic

A coning motion test produces forces and moments from multiple sources. Three

components discussed in Chapter 2 are weight (or weight - buoyancy), inertia and

hydrodynamic. An additional "force" is the bridge offsets or zeroes. This fourth com-

ponent is a function of temperature. The only force (or moment) of interest is the hydro-

dynamic force. To this end, a test procedure had to be developed that accounted for

each component and left the desired result. For this study, the desired result was both

the time varying (or AC component) and the steady state (or DC component) hydrody-

namic force. The basic test procedure was (starting with the model at the desired or4:

A. Model in air

I) Take a set of readings at set angular positions around a 360" rotation. Mea-

surementc done ever-y 11.25* starting at 0* and rotating in the positive (stan-

dard convention) direction (by hand) to 348.75"(32 sampling positions).

Store the raw counts for all 9 channels (100 sample sweeps/angular

position, summed to 1 point), both for each point (AC data) and the summa-

tion of all 32 points (1 revolution)/channel (DC data). Result: weight and

offsets raw counts for that a,.

2) Conduct "wind-off' runs at same rotation rate (a)) and direction as "full-up"

runs. Sample all 9 channels (1 sample sweep/angular position) and store

each raw counts data point. Sum raw counts for each channel over # of

revolutions (usually 10) and store for processing with DC water run results.

Result: weight, offsets, and inertia raw counts for that ax and o.
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3) Subtract DC raw counts measurements in test A.I from the DC raw counts

measurements in test A.2. Process the results for only the preferred 6 chan-

nels. Result: inertia force for that (c and o.

4) Repeat A.2 through A.4 for each (o, A.1 through A.4 for each a,.

Note: Though not processed immediately, the weight and inertia vs angular posi-

tion raw counts are stored and can be processed later for the inertial effect

over a rotation cycle.

B. Model in %iater

I After a "soak" period, usually overnight, repeat test procedure A. 1, with the

model in water and tunnel free stream velocity = 0. Result: weight - buoy-

ancy. and offsets.

Establish tunnel test conditions (i.e., tunnel free stream velocity and model

rotation rate). Conduct "full-up" run, recording 11 channels of data (9 bal-

ance, I DP, 1 rpm) at each angular position and storing the raw counts.

Sum raw counts for each channel over # revolutions for averaged (DC)

component. Result: weight - buoyancy, offsets, inertia, and hydrodynamic

raw counts.

3) Subtract DC raw counts measurements in test B.1 from DC raw counts

measurements m test B.2 (9 balance channels only). Process averaged data

for only preferred 6 channels, DP cell, and rpm data. Result: inertia and

hydrodynamic averaged force (over # rotation cycles).

4) Subtract inertia force measurements corresponding to that 03 and ot, from

the B.3 result. Result: Hydrodynamic force for those test conditions.

5) Repeat B.2 through B.4 for each e3, B. 1 through B.4 for each ot.
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Note: Again, the time varying data are all stored as raw counts files for futlre

processing.

The motivation behind the many decisions made in preparing this procedure is

discussed in the following sections.

3.2.2 Code Development

At the core of the data taking was the FORTRAN software developed by the

author (in conjunction with the routines developed by Glenn McKee of Stevens Institute,

Davidson Labs). The form of the test procedure and its limitations dictated the form of

the code. The critical issues considered were:

* Timing

* System capabilities

* Desired outputq (i.e., time varying and averaged forces)

3.2.2.1 Timing

The basic timing parameters considered were:

* A/D sample and conversion time for II channels

6 Model rotation rate

0 Code loop execution time

• # of divisions over a revolution

0 Maximum allowed change in gravity vector over a sample sweep

The MetraByte Dash 16F specifications give an estimated A/D conversion time

with DMA (Direct Memory Access) transfer of .04167 msec/conversion. For 11
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channels, this works out to = .46 msec. The experimentally determined A/D conver-

sion and transfer time = .052 msec/conversion giving a total - .57 msec for 11 chan-

nels. The importance of this is seen by looking at the maximum allowed change in

gravity over a sample sweep.

Using a small angle approximation for the change in rotation angle over a sam-

pie sweep, the following relation was derived:

AG = AO - .0 1rad (.57 deg)

for a maximum allowed change of 1%. At the maximum rotation speed of 200 rpm,

this works out to .4775 msec. The data taking system used simply could not satisfy

the 1% criteria (at 200 rpm). The actual AG for this study was = 1.2% (.68").

The tine to execute one data taking loop lead directly to the # of increments that

could be sampled over I revolution. Use of the shaft encoder as both a trigger and a

position indicator (locating the 0* position) required several logic statements in FOR-

TRAN. The logic allowed the code to read the digital word on the D/D input ports

and determine, 1) when to set 0', and 2) when to trigger a sample sweep. Embedded

in the logic loop was the Project Athena Laboratory sampling routine for reading in

and storing the A/D data. By running several loop timing versions of the data taking

code. the time to execute the loop was found to be = 5.2 msec for an I channel

sweep. Again looking at 200 rpm, the maximum number of increments in one revolu-

tion that would allow the loop to execute and return for the next trigger pulse was 32.

This allowed 9.375 msec for loop execution and return. 32 data points per rotation

were felt to be adequate resolution for the purposes of the experiment.

The data taking code used in this study is included in Appendix D.
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3.2.2.2 Desired Results

During the initial code development, the thought was to work directly with the

individual raw counts data points for subtracting tares and converting to forces. The

averaged force values would then be computed from these results. Unfortunately,

upon actual data taking, a mysterious phase shift and amplitude drop off were noticed

for all rotational speeds. The offenders in this case were the 3B-16 Amplifier/Filters

supplied with the balance. This should have come as no surprise, especially when the

3 Hz upper cutoff frequency was known a priori. The phase shift can be seen graphi-

cally in figure 13. Fortunately, only the time-varying or AC component was affected,

passing the zero Hz or DC component unchanged.

NI Raw Counts, 3/19/89,
20 dog. Reverse Direction

S-6050rpm

0C) "

7 50rp

7 rpm

Rotation Angle (Deg)

Figure 13. Phase Shift in Raw Count Data

This discovery initiated a flurry of code rewrite activity and caused a change in

philosophy to working only with the averaged counts. To maintain the ability to

work with the time varying data off-line, and to quantify (at least for one channel) the
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amplitude reduction and phase shift, a bode plot was made. The phase shift is Shown

in figure 14, the amplitude plot in figure 15. The best fit line for each was recorded

and stored for later use.

50Phase Shift vs Freq, Channel 0

0 3~4B6 SIO

0.1 .
Frqunc (1Hz

Fgr14PhshfvsFrequency z
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Figure 15. Amplitude Ratio vs Frequency

3.3 Tare Measurements

The test procedure delineated in section 3.2.1 accounts for the (W-B) and inertia

effects. Though it is possible to account for these forces analytically, they were eliminated

in a more straightforward manner by subtracting averaged (DC) measurements. The tare

tests were run in air since, compared to water, the air acts essentially as a vacuum and

doesn't influence the results. The general idea for the conduct of the tare measurements

came from Reference [14].
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3.3.1 Static

The static ((o = 0) tares were very simple. The model (in water) was set at the

desired ct,, the roll angle set to 0, and a set of readings taken. This "zero" file accounts

for the (W-B) and offsets for that a. The tunnel test conditions were set and another set

of readings taken. Subtraction of the two files left the desired static hydrodynamic load.

A more thorough approach would have been to repeat this at several rotational positions

and average the results. Because of time constraints, this was not done.

3.3.2 Rotational

The inenial load- can be calculated analytically, given the model mass, moments

of inertia about the principle axes, and the location of the model CG. Additionally, these

values must be assumed to not vary with rotation rate. If this course is pursued, then the

following relations, derived in Appendix B, result:

* For the inertia forces (in SNAME axis convention):

X, =to2XG sin2 a,

1' =-r (o2x, sin a, cos a,

M, = -m(I, - .) (sin a, cos (x,)

K, =N =0

. For the weight and buoyancy forces:
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Xw_B = -(W - B) sin o, cos ax

Yw=-B (W -B) sin ox

4 .9 =(W -B) cos q, cos co

Kv = W[y. cos a, cos wo - z. sin cot]

M,,= -W cos co [z. sin a, + x. cos aj]

NI,= W[x, sin Cot + Yo sin ac cos Cot]

The same moment equations result for buoyancy by substituting -B for W and x9, Y, zp

for I Y' :C •

There are several problems with using these relations directly. First, the

model/sting combination deflects during rotation, causing the actual inertial loads to

vary. Second, use of the weight and buoyancy relations would involve determiing the

offsets separately, rather than the more direct method of lumping them with the weight

and buoyancy effects. Finally. the relations depend on accurately knowing the model

mass moments of inertia, the CG, and mass. Errors in these quantities would reflect

directly in the calculated forces and moments.

For this experiment, the deflection should be small due to the relatively small iner-

tial forces at the maximum c, and co. As it turned out, the design of the model/sting

minimized the inertia force contribution. The calculated and actual measured inertia

forces for a,. = -20" and -14" are shown in the following figures. Figures 16 and 17 are

for the -20" setting, figures 18 and 19 for the -14" angle. The moment measurements

have been corrected for sign to conform the standard convention.
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Figure 16. X and Z Inertia forces, 20*
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Figuiwe 17. M Inertial Moment, 20*
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Figure 19. M Inertial Moment, 14"
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Because calculation of 1, and I, would be approximate at best, the actual data was

fit with a second order curve, and the result used to empirically determine the two terms.

This method worked quite well, with only a 2.9% difference between the 14" and 20"

curve fit determined values. The numbers used in calculating the forces and moments

were:

* (I, - l): -.3706 slugs-in2

0 m: .3248 slugs

a xc: .40 inches

The 14" X, Z, NI, and the 20' M results seem to match very well with the calcu-

lated trends. The 20" X and Z force measurements depart significantly from the calcu-

lated trends. Much scatter can be seen in the experiment results. Three factors could

explain the result:

* The measured forces are very small, much less than 1% of full scale calibra-

tion load.

" The temperature effects were not well compensated for.

" xG and m are off from their actual values.

The third bullet helps explain the excellent correlation for the M plots and the poorer

correlation for the force plots. Also, the moment correlation might be better because the

moment values arise from subtraction of the two normal force balance outputs, possibly

cancelling an), errors. The Z force readings are the result of the addition of the two

normal force balance readings, possibly compounding the error.

Despite the force discrepancies, the actual inertia force is small compared to the

hydrodynamic force, ranging from 1.7% to 4% of the measured Z hydrodynamic force.

The only significant inertia effect, M, is well predicted.
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One point that has been overlooked is the deflection of the balance due to the

hydrodynamic force. No attempt was made to correct for this effect, and is left as a

refinement for future experiments using this apparatus.

3.4 Test Matrix

Before any rotational testing could be done, the test matrix had to be determined.

The matrix evolved from satisfying the goals:

* Widest possible coverage of non-dimensional spin rate, Co'.

0 Maximum hydrodynamic force.

* Minimum Reynolds effects.

" Maximum # of (o increments in a test run (i.e., 0 - 200 rpm).

" Maximum cc, coverage (i.e., 0 to 20").

• Maximum p' and r' combination.

Because of time constraints, only three x, settings were tested; -8, -14o, and -20'. For

each (x,. the tests were run in increments of 12.5 rpm, from 0 to 200 rpm (where possible).

m one rotation direction, and at 25 ft/s free stream velocity. The variances on this proce-

dure were: for -20' , do tests for 20, 25, and 30 ft/s free stream velocity to investigate

Reynolds effects, for -14', do runs in both rotation directions to get function even/odd

characteristics.

The 25 ft/s base velocity was chosen as a compromise between hydrodynamic force

and range of non-dimensional spin rate. This resulted in a minimum Reynolds number in

the range of 5x 106, well above the agreed upon lower cutoff of 3x 106 (for Reynolds num-

ber dependencies). The resulting p' and r' ranges were: p': 0 - 1.93, r': 0 - .70.
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Chapter 4 Test Results

"Full-up" test runs were conducted using the rotary rig and standard I/D=-9.5 model

described previously. The test procedure delineated in section 3.2.1 was followed. Normal,

side, and axial forces, roling, pitching, and yawing moments were measured with the model

in coning motion at coning rates up to 200 RPM. The majority of the runs were performed at

25ft/s (Reynolds Number based on model length of 5x10 6). Coning angle, (x,, varied from

-8" to -20'. The measured forces are non-dimensionalized and presented as functions of the

non-dimensional spin rate, io'. The axial force and roll moment are not presented as they

were determined not to be particularly important for this experiment. All non-dimensional

parameters are presented in the standard SNAME, body-fixed, axis convention [15].

Figures 20 and 21 show the non-dinensional force and moment variation with both

spin rate and Reynolds number for cc, = -20'. Figures 22 and 23 show the non-dimensional

force and moment variation with both positive and negative spin rates for cc, = -14'. Figures

24 and 25 present the force and moment variation for a, = -8". Finally, figures 26 and 27

show the variation of the non-dimensional side force and yawing moment, respectively, with

coning angle. A tabular listing of the forces and moments is in Appendix C.
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Y' and Z' vs w'
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Figure 20. Y' and Z', a,~ =20*
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M' and N' vs w'
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Figure 21. M' and N',c, = -20*
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Figure 22. Y'andZ',a = -14'
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0.15 M' and N' vs w'
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Figure 23. M'andN',czc =-14"
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0.35 Y' and Z' vs w'
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Figure 24. Y'andZ',aE =-8*
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M' and N' vs W'
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Figure 25. M' and N', c =-8"
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Y' vs Alpha Coning
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Figure 26. Y' vs--as,

The 20' force data demonstrate a nearly linear dependence on coning rate for the nor-

mal force and a very non-linear dependence for the side force. Of note is the significance of

the out-of-plane force (Y'), which reaches 30% of the in-plane force. Both the pitching and
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N' vs Alpha Coning
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Figure 27. N'vs --a

yawing moments show a non-linear dependence on cd. Reynolds number effects seem negli-

gible for the forces, and to have a slight influence on the moments. For the yawing moment,

the lower Reynolds number data shows a tendency to go non-linear sooner than the 25 and 30

ft/s data. The difference in the pitching moment is not readily explained.
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The normal and side forces have the even-odd characteristics anticipated. Because of

symnetry, the lateral force and moment, Y' and N', should be odd functions of the coning

rate parameter, while the longitudinal force and moment, Z' and M', should be even func-

tions of the coning rate. The 14" data clearly shows the even/odd relationship for the forces

and moments. The slight asymmetry in the data with respect to positive and negative spin

rate could result from misalignment of the model/sting combination with the free stream

velocity.

The 8' force data exhibited similar trends as the 14" and 20" results. The pitching and

yawing moments, however, appear almost constant over the range of spin rates investigated.

The slight deviations for the zero spin rate results are most likely test anomalies, and not true

pictures of the trends. The N' static result should be zero, as a linear interpolation through

the remaining data points suggest.

The moments and the normal force display similar trends for the 14" and 20" results.

The side force shows a different character between the t, settings, especially when the 8"

data is included. As figure 26 shows, the side force is a very non-linear function of coning

angle, changing signs at approximately 14". The relationship could be quadratic, but with

only three data points per line, the exact form is impossible to determine. The yawing

moment also shows a non-linear characteristic with coning angle, becoming nearly linear for

the high spin rates. Obviously, more data points are necessary before any strong functional

dependencies can be determined.

Page 63



Chapter 5 Data Analysis

The purpose of this chapter is to validate the steady-state data presented in Chapter 4.

Two main paths are pursued:

" Comparison with numerical results.

" Frequency analysis of raw balance data and encoder determined RPM data.

5.1 Comparison with Numerical Results

A vortex cloud numerical algorithm, developed by Nielsen Engineering and

Research (NEAR), was used for producing the calculated results for comparison. A

description of the computer code SUBFLO is found in reference [161. The method basi-

cally models the body and major physical features of the flow field with singularity distrib-

utions. Mutual interactions of the body shed vorticity are considered in the prediction of

the induced forces and moments [9]. The test cases shown in the following table were

provided to and run by NEAR for producing the predicted forces and moments. The

NEAR predictions were made for both no separation and laminar separation. Laminar sep-

aration was used to avoid the uncertainty of transition effects.

In all cases, except for the 20 ft/s. 125 rpm, N', result, the experimentally determined

force or moment fell in the range bounded by the laminar and no separation cases. Addi-

tionally, the laminar separation cases more accurately predicted the experimental result for

all runs. For this study, the cross-flow Reynolds number based on diameter ranged from

approximately 1.5x 10- to 3x10 5 . This is on the edge of the transition region from laminar

to turbulent separation, which is indicated by a rapid drop in the drag coefficient for a cir-

cular cylinder in a cross-flow. Based on this, the flow about the model should have been

transitional, and is shown to be so by the test results. The actual separation point during
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V. 0 (0 Case Z/ Yf MP N'

ft/s rpm

30 0 0 laminar 1.339 0.0 -.247 0.0

none -.062 0.0 -.526 0.0

exprmnt. .901 .0394 -.278 -.0191

30 100 .684 laminar 1.829 .701 -.130 -.152

none .004 -.401 -.500 .007

exprmnt. 1.197 .352 -.223 -. 148

20 125 1.204 laminar 2.282 .869 -.089 -. 131

none -.006 -.754 -.537 .012

exprmnt. 1.587 .439 -. 143 -. 199

20 175 1.686 laminar 2.729 1.303 -.083 -. 192

none -.016 -1.060 -.588 .015

exprmnt. 1.878 .334 -. 121 -. 169

Table 5.1 Numerical and Experiment Non-Dimensional Results

the test should have been further aft than the calculated laminar separation case, leading to

measured forces and moments somewhat less than the laminar predictions. That this is

true lends some reassurance to the validity of the test results.
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Figures 28 and 29 show the laminar separation results along with the measured

forces and moments for a, = 20". The predicted normal force follows the measured trend,

however, the predicted side force does not completely follow the experiment trend. The

same relationship holds for the moments: the predicted in-plane moment, M', follows the

experimental data trend, where the calculated out-of-plane moment, N', has a very differ-

ent characteristic. In both figures, the last data point seems to cause the problem. Only by

"filling-in" the predicted curve, however, can meaningful conclusions about the results be

made.
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Y' and Z' vs w'
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Figure 28. Predicted and Experiment Non-Dimensional Forces
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M' ond N' vs W'
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Figure 29. Predicted and Experiment Non-Dimensional Moments

5.2 Frequency Analysis

The quality of the steddy state force measured is related to the time varying effects

present during the test. To get a handle on the vibration effects, a plot of the raw counts

output for the normal force bridge vs rotation angle (or time) was created. The summation

of 10 revolutions worth of data is shown in figure 30. The 20', 30 ft/s run with the wing
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attachment was considered the most probable for vibration effects. To avoid any convolu-

tion of the result, the raw counts vice the processed forces were analyzed. As seen from

the figure, there seems to be some scatter and possibly high frequency noise in the signal.

The data points do follow the expected sinusoidal pattern, however, and when fit with a

fourth order curve, produce a reasonable waveform.

N1 Raw Counts
200 RPM, 30 ft/s, 20 deg

0

cT
C -

(D

3.

0

0C

I I I I i ' I~w I i i I I I I w I I I I I I

0 o 50 100 15 200 250 300 350

Rotation Angle (degrees)

Figure 30. Summed Raw Counts Output
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A fast fourier transform (FFT) algorithm [17] was programmed and used to trans-

form the 10 revolution raw counts output for both the NI and N2 normal force channels.

The FFT quickly accomplishes the discrete fourier transform of the N real data points

(h's) as shown:

I N- .
H _ oh~e, N

Nk-O

The FFT produced a frequency and amplitude decomposition of the data points for fre-

quencies up to the Nyquist or folding frequency. The Nyquist frequency is defined as:

f = where A= sample time interval.

For the 200 rpm runs, the folding frequency was 53.33 Hz.

The FFT of the data used to produce figure 30 is shown in figure 31. The spike pres-

ent at 3.3 Hz represents the fundamental rotation frequency (200 rpm). There are no major

high frequency effects present. and only minimal lower frequency effects. This proves that

the 3 Hz cutoff filters in the signal amplifiers did filter out any major high frequency noise,

if any were present! For comparison, the inertia raw counts data was processed and is

shown in figure 32. The figure does highlight the presence of some high and low fre-

quency noise in the full-up data signal by comparison. The difference between the two

figures could account for the scatter seen in the time varying signal. For further insight,

the side force balance channels, Y I and Y2, were also processed for the same full-up test

run. The results shown in figure 33 are very similar to those for the normal force channels.
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FFT of N1 & N2 Row Counts
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Figure 31. FFT of Normal Force Channels
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FFT of N1 & N2 Row Counts
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Figure 32. FFT of Normal Force Channels, Inertia Run

Because of the 3 Hz cutoff filters in the signal conditioners, no significant higher fre-

quency effects could be seen (i.e., wall frequencies, higher harmonics, etc.). A look at the

unfiltered shaft encoder output for rpm variation over a cycle however, could provide some

high frequency information. Four cases were processed: 20', 200 rpm inertia and full-up

runs, and 20, 25 rpm inertia and full-up runs. The cases covered the test spectrum for the
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FFT of Y1 & Y2 Row Counts
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Figure 33. FFT of Side Force Channels

20" runs. The FFT results are shown in figures 34 and 35. The 200 rpm full-up run defi-

nitely shows a 2T harmonic at 6.67 Hz. This is probably from the wing attachment passing

by the support wing mounted to the forward nacelle. There are some other harmonics,
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however, on the whole, the magnitudes are very small, typically tenths of rpm's. No wall

frequency component (4 x rotation frequency) was visible. Also, no 50 Hz component (the

calculated torsional resonance frequency) was seen.

FFT of RPM for

1.10 20 deg, 200 rpm

1.00
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0.00 .
45 A43 4 5 
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Figure 34. 200 RPM, Inertia and Ful-up Run FFT Results
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Figure 35. 25 RPM, Inertia and Full-up Run FFT Results

RPM variation over a cycle is an important factor in obtainig accurate force and

moment measurements. The FFT analysis produced the variation magnitude. The funda-

mental rotation speed fluctuation was small for both rpm cases: 1.05 rpm for 200 rpm
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(0.525%), and .18 rpm for 25 rpm (.72%) full-up runs. The 200 rpm output was much less

than the calculated maximum rpm variation of 4.8 rpm. The low variance is a direct result

of counter balancing the large sheave to account for the model/sting off-center weight.
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Chapter 6 Conclusions and Recommendations

6.1 Conclusions

As part of continuing research into the flow about slender bodies of revolution, a

coning motion apparatus for hydrodynamic model testing was built and demonstrated. The

resulting test apparatus represents a culmination of effort by MIT, Stevens Institute of

Technology, and General Dynamics, Electric Boat Division, and Convair Division.

As the first test site for a coning motion experiment, the MIT variable pressure water

tunnel required moderate modification. The modifications included installation of the

model drive shaft, supports, and motor lrive system. A workable data acquisition system,

capable of capturing both the time varying and steady state effects, was established. The

final system was capable of:

f Positive and negative rotation rates to 200 RPM.

0 0 to -20" coning angle settings in 2" increments.

• Free stream velocities to 30 ft/s.

The demonstration tests conducted covered a limited range of spin rates and coning

angle settings. Reynolds number based on model length varied from 4.04x106 to 6.06x106.

Cross-flow Reynolds number based on body maximum diameter extended from 1.5x 105 to

3x 10% covering flow regimes in range of the transition from laminar to turbulent separa-

tion. The steady state forces and moments were non-dimensionalized and presented as

functions of the non-dimensional spin rate. Some of the main observations are:

* Effects of Reynolds number variation are insignificant for the test range inves-

tigated.

* The out-of-plane forces and moments (Y' and N') are significant, reaching mag-

nitudes of 30% of the in-plane force.
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* The forces and moments are non-linear functions of the spin rate for coning

angle settings > 14'.

• The side force, Y', is a possibly quadratic or higher order function of the coning

angle.

* Measured test data correlates fairly well with numerical results, falling within

the range of no se: aration to laminar separation.

Overall, the first hydrodynamic captive model test using a rotary balance apparatus

was a great success and opens the door to obtaining test data for motion in a non-planar

cross flow. Ultimately, this will lead to a better understanding of the physics governing the

behavior of freely moving bodies in large amplitude maneuvers.

6.2 Recommendations

Because of the extensive literature covering the experience of aeronautic researchers

with the rotary balance apparatus, many first time mistakes were avoided. However, the

different nature of testing in a water versus wind tunnel brought on its own host of prob-

lems. The largest differences were the presence of buoyant forces, the thermal effects

caused by immersion in water, and working in medium of roughly 1000 times greater

density than air. For subsequent on testing, several recommendations can be made:

• Streamline the sector assembly to reduce both drag and cavitation caused by

the sharp comers.

" Counter balance the apparatus at the model end to minimize rotational variance

over a cycle. Counter balancing is essential.

* Recalibrate the balance for a standard axis system convention.
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Exchange the amplifier/filters for units with a higher cutoff frequency (if useful

time varying information is desired). If this is not done, then include some

separate monitoring system to check for vibration effects.

For greater accuracy, conduct an on site calibration that accounts for local sys-

tem peculiarities and determines model/sting deflection as a function of load-

ing.

" Conduct all tests at a given ox in both rotation directions to account for flow

angularity.

" Quantify the temperature sensitivity of the balance to allow for data correction

later.

* Replace the 2 HP motor with a 5 HP motor. This will also minimize the RPM

variance over a cycle. The current motor is undersized.
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APPENDIX A

Taylor Series Expansion

A 1 Taylor Series Expansion

A Taylor series expansion with respect to the rectilinear and angular velocity compo-

nents about a given condition is accomplished for representative forces and moments. The

expansion will show the hydrodynamic derivatives that are of importance and which relate

directly to this study.

A 1.1 Conventions

The axis system, hydrodynamic forces, and the non-dimensionalizations are in accor-

dance with reference [15]. The rectangular coordinate system in body fixed axis is as

shown. The x-axis is chosen to coincide with the longitudinal axis of the body. The y-axis

is in the horizontal plane

and is positive to starboard. Body Fixed Axis System

The x-z plane is taken to be
.. --x,u.p

the principle plane of svm- X K

met ry.

Z,N
The hydrodynamic force and moments, X, Y, Z, and K, M, N respectively, and the

linear and angular velocity components are non-dimensionalized as follows:
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Taylor Series Expansion

* Dimensionless Forces:

_X Y z

pAU2pA U2  pAU

- Dimensionless Moments:

K M N

2 pAU 2  
2 pAIU pAIU

- Dimensionless Velocities

Ut V 14

U W'14
U U U

P q = r/

where: A = body frontal area

I = body length

U = free stream velocity

Note:

U U2 + 12 +2 2 ,2 + %,,2

u'. C", and w' are direction cosines, not simply dimensionless u, v, and w, because

the normalizing velocity, U, varies.

A 1.2 Example Expansion of a Hydrodynamic Function

Because of the tedious nature of the expansion, only the X hydrodynamic force is

expanded as a representative force. The expansion is carried out about the condition of

straight ahead motion at the instantaneous surge velocity, u(t):
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Taylor Series Expansion

u=u(t), v=w=p=q=r=O

or in non-dimensional form:

up= 1,v"=w'= pp=q'=r'=O

The X force is a function of the three linear and three angular velocities and can be written

as:

X =X(u, i,w,p,q,r) =pA U2X'(Re,v',w',p',q',r') Re = --

2 V

Expanding about the reference point, the general form of the expansion is:

-p ,,- a '
X'(Re. 1 w," . r'=-,k14L I P + V" P- - +q' + r X (Re v, 5, . , )

where v. 5, , ,. and are duruny variables.

X', = X'(Re .O.O,O,O) Re, = --
V

Following reference [15], the standard shorthand notation is introduced:

X' =[-X'(Re,v',O0,O0,0,)0

Carrying out the expansion for the zero" and first order terms:

X" ' q'(eov,8, , 1, 0 +

X'=X', + [X'- v' M + X'w' +X'pp'+X',q'+X',rl +...
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Taylor Series Expansion

Carrying out the expansion for second and some of the third order terms and employ-

ing the shorthand notation:

X' =X' + [k =lterms] +I [X'." 2 +2X'.,v'w'+2X' vp'+ 2X qv'q'+2X'.v"r'

+X',..w' 2 + 2X" ' 'p' + 2X',.qw'q + 2X P 'r'

+x"," ,2 '+ 2X',,p'q + " r

+ X'qqq' 2 +2X'q, q'r'+X

[ 2X' v'% +3X',. v w+ p + 3X',,. qX+ 3XX,.,.,vr6 "" • ,v 'p' K ' 2 + 3K'r'

+3X',,, v'w' 2+6X ,,v'w'p'+ 6X',, v'wr+... +X',,, r'3] +

The expansion is the same for the other forces and moments:

X' = Y',Z',KM',N"

The expansion becomes quite cumbersome for a complete third order and higher

expansion. Fortunately, many of the terms can be eliminated on the basis of symmetry.

As a result of the x-z symmetry plane: X',Z', and M' are even in v',p',r' and

Y'.K',and N' are odd in v'.p'.and r'. Using this and the data presented in Tables HI -

VI of Reference [101, the X'and Y' force terms are reduced to:

'='+X'w 2 2 ,,w+X '+ ',, p + 2 ',pr'Xq' 2 +'.r1

I
+ I [k = 3terms] + ....

6
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Taylor Series Expansion

Y'= Y', + [Y', + Y'pp'+ Y',r']

1
-I V' + 2 Y',.qv q + 2Y'"Vp' + 2Y.,,'r' + 2Y',p'q' + 2Y',,q'r'I

+ I [k, = 3terrns] +
6

The force and moment terms can now be put in their final dimensional form. As a

representative force, the X force becomes:

X =X'o(pAU2+[X' W+XqqnI(IpAU)

+ I [X' v'+ 3X' 'vv +..] pA )
62U

The final form follows the same procedure for the other forces and moments (the dimen-

sionalization is slightly different for the moments K, M, and N).

A 2 Data Analysis

The Taylor Series expansion fits an assumed model of the form:

Y'= I b ( v ,'qr)f

where: Y' = measured hydrodynamic forces

b) = coefficients

f, = "fitting" functions

E = truncation error
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Taylor Series Expansion

The fitting functions are the controlled variables during the experiment (i.e., the result-

ing linear and angular velocities and their combinations for a given rotation rate, coning

angle, and tunnel velocity). The measured hydrodynamic forces and moments are the

dependent variables resulting from the test runs. The basic matrix equation to solve is:

{Y} = IX] {b} (1)

where: Y = measured hydrodynamic force vector (1 x m)

[X] = fitting functions (n x m)

{b) = least squares fit coefficients (1 x n)

m = # data runs

n = # fitting functions

(YI and [X] are known from the experiment. The basic equation is unsolvable as is;

therefore, a least squares approach is adopted. The method is to find the vector (b) that

minimizes the sum of squares of the error. This is equivalent to minimizing the equation:

(iX1 {b) _ I y}) ([X1 b) - {Y]))[ 
]

The minimization is found by multiplying both sides of equation (1) by [X]T and then

solving for I b)

(X] T iX] {b} = [xT {y}

{bl = ([X] T[X]) - f [X] {Y} (2)
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Taylor Series Expansion

Once the coefficient vector ( b I is known, it can be directly related to the corresponding

hydrodynamic coefficients through a multiplicative constant. For example:

X'= X'0 + bl'4,'+ b2q'+ b3 v' 2 +

b =X'.,

b, X'q

Pg 8
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APPENDIX B

B 1 Inertial Forces

The forces and moments experienced by the body-fixed balance due to the rotary

motion of the apparatus are calculated as functions of the model moments of inertia (I,, Iy,,

1 ,), the rotation rate (o), and the coning angle (cc,). The approach will be completely gen-

eral, and later adapted to this particular study.

The axis convention is as follows:

* Fixed (in space) axis system: xo, yo, zo.

* Body fixed axis system: x, y, z.

The coning angle, o,, is defined as the angle between the x and x, axes. The x-axis is coli-

near with the centerline of the model, the x,-axis is colinear with the centerline of the test

section. The rotation rate vector, (o, is also colinear with the tunnel centerline. The

nomenclature and axis system used here is consistent with the list of nomenclature.

The equations of motion can be derived from a dynamic analysis. Using the basic

Newtonian force/moment relationships:

- d d
F,-= - (Momenrum) -(m UG) (1)

d dMG = (Angular Momentum) =d (HG) (2)

where

m = model mass

UG = velocity of model CG

HG = angular momentum of model at CC
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For a reference point not at the CG, equations (1) and (2) can be rewritten as:

d - -
F= -(U, +!. xRG)

dr

where

= u u, + v u + w = Velocity of reference point in space.

ii-- = pu, + qu1 + ru. = Angular velocity of body about the reference point.

RG = XG , + Y + :GU = Vector distance of CG from reference point.

Carrying out the differentiation and vector multiplication and setting the acceleration

tenns = 0. the force and moment components reduce to:

X =ni [qw - ri - x,(q2 +1. 2) + Yc(pq) + zG(pr)]

Y = ni [ru - pw - Y' (, 2 + p 2) + :G(qr) +x,(qp)]

Z =r? [pv - qu - ZG(p 2 + q 2) +xG(rp) + yG(rq)]

K = (I- - I,)qr + m [y0 (pv - qu) - zG(ru - pw)

+xGyc(pr) - xGzG(pq) + yGG(r - q2)]

M = (, -1:)rp +m z(qw - rv) -xG(pv -qu)
x 2

+ yzG(qp) - yGxG(qr) +XG:G(p - r 2)]

N =(I, - I,)pq + m [xG(ru - pw) - yc(qw - rn)

+ GX"((rq) - zGYG(rp) + yxG(q 2 - p 2)]

where xG. YG. :G are the component distances of the model CG from the reference point.
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For the formulation to be useful, the body-fixed velocities had to be defined with

respect to the known variables, co and ct,. A transformation matrix was derived that resolved

the rotation rate (w3), which was defined in the x., y., zo coordinate system, into the body-

fixed x, y, z system. The derived result (for no roll angle, O = 0) is as shown:

. sin t -cos ot, sin w cos (xcos W J

Given that the rotation vector is o = odo, the relevant transformation is:

p =(cos a)co

q =0

r = (sin ot,)wo

Because the reference point is fixed. u = v w = 0. Substituting into the force and moment

equations:

X, = noI-XG(sn xo) + :(cos cc sin a,)]

= -n i()o

Z, =no 2[-Z(cos2 a,) + x(sin ac cos a)]

K, = m o12y, sin oc,[xG cos ot, + z. sin o]

= 0) 2[(I -14 (sin (X, cos X,) + mXGzG(cos a, - sin2 c,)]

N = -m wO2 NGcos a, [ZG sin a( +xG cos 00

The i subscript refers to inertia forces.

For the model used in the experiment, YG = Z- - 0 and XG = .40 inches. Because of the

symmetry of the model about the x-z and x-y planes (both geometric and inertial):

1,7 = I:2 = I = 0
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* 1y = I,

By inserting these relations into the inertial force an(' moment equations, the final form

results:

X=-m ox. sin2 a,

1', =0

Z = mo x. sin a, cos a,

M = w(1, - 1:) (sina cos a,)

K, =N, =0

The forces and moments above are actually the reaction forces and moments. To be consis-

tent with the inertia] forces and moments measured by the balance, the negative of the

relations should be used for comparison. Therefore, the negative of the relations were used

to predict the inertia forces experienced by the balance, and then compared with experiment

results.

B 2 Gravitational and Buoyancy Forces

Having derived the tiansfonnation matrix in the previous section. the calculation of

gravitational and buoyancy forces (and moments) is straight forward. The gravity and buoy-

ancy vectors are: G = Wti. and B =-Bd,o. The forces follow directly:

X.._B = - (  - B) sin cc, cos

Yw._B = (W - B) sin ow

( = '(W - B) cos a, coso
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For the moments, a simple moment balance at the reference point results in the relations for

weight and buoyancy:

Kv. = WG coS (X COS (o1t - G Sin t]

M= -W cos o [:G sin c, + x. cos a]

N,. = [xG Sin oy + VGsi a cos t]

The same equations result for buoyancy by substituting -B for W and x,, yB. :B for XG. YG, Z.•
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Appendix C Test Data

The following pages contain the steady state inertia and test run data for the plots pres-

ented in Chapters 3 and 4.
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C 1 Inertia Data

ac= -20 °

Measured Forces & Moments SNAME Axis Convention
Calculated Forces & Moments

X Z M X Z M

RPM lbs lbs in-lbs lbs lbs in-lbs

49.25 0.0288 -0.1236 2.8651 0.0337 0.0926 -3.2139

62.31 0.0546 -0.0462 4.8078 0.0539 0.1481 -5.1444

74.57 0.0790 0.0408 7.0166 0.0772 0.2122 -7.3679

87.12 0.1096 0.1140 9.6901 0.1054 0.2896 -10.0566

99.76 0.1367 0.2128 12.8832 0.1382 0.3797 -13.1865

112.09 0.1678 0.2913 16.3004 0.1745 0.47941 -16.6475

118.71 0.1826 0.3119 18.3621 0.1957 0.5377 -18.6720

136.78 0.2346 0.4435 24.5037 0.2598 0.7139 -24.7891

149.81 0.2714 0.5189 29.4050 0.3117 0.8564 -29.7370

162.15 0.2982 0.5495 34.6056 0.3652 1.0033 -34.8377

174.79 0.3388 0.6281 40.2188 0.4243 1.1658 -40.4808

187.23 0.3816 0.7160 461558 0.4869 1.3376 -46.4480

200.04 0.4249 0.8854 52.7484 0.5558 1.5269 -53.0212
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= .'4

Measured Forces & Moments SNAME Axis Convention
Calculated Forces & Moments

X Z M X Z M

RPM lbs lbs in-lbs lbs lbs in-lbs

49.57 0.0090 0.0724 2.4397 0.0171 0.0685 -2.3100

62.33 0.0218 0.0672 3.9159 0.0270 0.1083 -3.6523

74.50 0.0402 0.1913 5.4709 0.0386 0.1547 -5.2178

87.01 0.0586 0.2811 7.4337 0.0526 0.2110 -7.1173

99.63 0.0662 0.2408 9.7965 0.0690 0.2766 -9.3316

112.13 0.1038 0.3423 12.4130 0.0874 0.3504 -11.8200

124.64 0.1180 0.4912 15.1671 0.1079 0.4330 -14.6046

137.40 0.1588 0.5891 18.5433 0.1312 0.5261 -17.7479

14Q.75 0.1711 0.6659 22.0771 0.1558 0.6250 -21.0818

162.26 0.1867 0.6543 25.5793 0.1829 0.7338 -24.7512

174.85 0.1955 0.7555 29.6556 0.2124 0.8520 -28.7412

187.39 0.2285 0.8517 34.0778 0.2440 0.9786 -33.0116

199.41 0.2475 0.9916 38.5838T 0.2763 1.1082 -37.3825
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C 2 Water Test Data

c(X = -20' , V = 20 ft/s

Dimensional Forces and Moments:

(0 V X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs in-lbs

0.00 20.00 1.7807 -. 4127 13.3950 -0.0499 97.7634 5.4022

24.73 20.14 1.8050 -3.0184 14.4783 -0.0893 94.9171 28.2857

49.88 19.94 1.7565 -4.6306 16.8702 0.7687 82.3410 48.3047

62.60 20.00 1.6496 -5.4057 18.0369 0.7171 76.5490 55.3021

74.96 20.16 1.6015 -6.0838 19.4667 0.6990 71.5372 62.0918

87.28 20.04 1.4227 -6.4383 20.5436 0.8320 65.0586 66.3317

99.91 20.00 1.3748 -6.7695 21.8154 0.8238 58.7498 69.3997

112.86 19.98 1.3545 -6.8481 23.1153 0.8295 53.3163 71.3852

124.97 20.00 1.3613 -6.7248 24.3194 0.8603 51.5026 71.6046

137.57 19.99 1.3772 -6.3449 25.2051 0.8519 47.9207 69.5812

149.93 20.03 1.4644 -6.1989 26.1849 0.0097 46.3321 67.3002

162.33 19.68 1.0483 -5.2636 26.6441 -0.3071 44.5136 61.1284

174.93 19.80 1.1375 -5.0225 28.2116 -0.2395 42.5456 59.8012
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,= -20', V = 20 ft/s

Non-Dimensional Force and Moments (SNAME Axis Convention)

(0' X' y' Z' K' 4 1. Arp

0.0000 0.11617 0.02692 0.87384 0.00014 -0.27139 -0.01500

0.2518 0.11612 0.19418 0.93142 0.00024 -0.25984 -0.07743

0.5130 0.11528 0.30390 1.10718 -0.00215 -0.22996 -0.13490

0.6419 0.10761 0.35265 1.17666 -0.00199 -0.21250 -0.15352

0.7625 0.10282 0.39061 1.24986 -0.00191 -0.19545 -0.16964

0.8932 0.09244 0.41834 1.33484 -0.00230 -0.17988 -0.18340

1.0245 0.08969 0.44162 1.42315 -0.00229 -0.16309 -0.19265

1.1584 0.08854 0.44764 1.51097 -0.00231 -0.14830 -0.19856

1.2814 0.08881 0.43870 1.58650 -0.00239 -0.14297 -0.19877

1.4113 0.08993 0.41433 1.64593 -0.00237 -0.13316 -0.19335

1.5351 0.09525 0.40318 1.70309 -0.00003 -0.12823 -0.18627

1.6916 0.07063 0.35463 1.79514 0.00088 -0.12762 -0.17526

1.8118 0.07571 0.33430 1.87778 0.00068 -0.12050 -0.16938
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,= -20', V = 25 ft/s

Dimensional Forces and Moments:

to V X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs in-lbs

0.00 25.00 2.8352 -1.1874 21.3436 -0.1478 155.7889 12.6462

24.61 25.16 2.9638 -4.0519 22.5019 -0.1640 152.6435 36.6306

49.60 24.99 2.8429 -6.1961 24.6022 0.2214 140.2328 62.0913

62.00 24.99 2.7436 -7.2647 25.7674 0.2760 132.8883 71.9413

74.96 25.08 2.7272 -7.8359 27.4710 0.6629 127.0355 80.4999

87.57 25.02 2.5884 -8.5436 28.9508 0.9469 119.1681 87.2302

100.07 25.01 2.5976 -8.9943 30.3857 1.0378 112.7317 93.1821

112.01 25.09 2.4454 -9.7209 31.6042 0.2466 108.1354 98.4144

124.96 24.99 2.3587 -10.1292 33.0844 0.2946 101.9607 102.7088

137.11 25.00 2.3444 -10.5471 34.8084 0.4102 93.5887 106.4660

150.54 24.88 1.8940 -10.4834 36.4530 -0.2555 86.9464 108.3579

162.47 24.80 1.8399 -10.2761 38.1074 -0.3561 80.7528 108.6325

175.72 24.79 1.7725 -10.2041 39.9737 -0.1667 75.4170 109.1923

188.13 24.74 1.8304 -9.7537 41.2867 -0.1466 71.8783 106.3098

Page 101



o = -20', V = 25 ft/s

Non-Dimensional Force and Moments (SNAME Axis Convention)

X. Y' Z' K' M' N'

0.0000 0.11837 0.04958 0.89112 0.00026 -0.27678 -0.02247

0.2006 0.12217 0.16703 0.92757 0.00029 -0.26776 -0.06425

0.4070 0.11879 0.25890 1.02799 -0.00039 -0.24934 -0.11040

0.5088 0.11464 0.30355 1.07668 -0.00049 -0.23628 -0.12792

0.6129 0.11314 0.32507 1.13964 -0.00117 -0.22426 -0.14211

0.7178 0.10790 0.35614 1.20680 -0.00168 -0.21138 -0.15473

0.8206 0.10837 0.37522 1.26762 -0.00184 -0.20012 -0.16542

0.9155 0.10137 0.40295 1.31006 -0.00043 -0.19074 -0.17360

1.0255 0.09856 0.42324 1.38242 -0.00052 -0.18129 -0.18262

1.1247 0.09788 0.44035 1.45329 -0.00073 -0.16627 -0.18915

1.2408 0.07984 0.44193 1.53667 0.00046 -0.15597 -0.19438

1.3435 0.07806 0.43599 1.61679 0.00064 -0.14579 -0.19613

1.4537 0.07526 0.43328 1.69734 0.00030 -0.13627 -0.19730

1.5595 0.07804 0.41583 1.76019 0.00027 -0.13040 -0.19287
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c= -20', N' = 30 fl/s

Dimensional Forces and Moments:

0 V X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs rn-lbs

0.00 30.00 4.3006 -1.3594 31.3776 -0.1053 225.6850 15.5032

24.92 29.90 4.4342 -4.4899 33.1005 -0.1902 227.2220 41.6996

50.21 29.85 4.5976 -6.9112 35.3535 0.0677 215.9177 72.3032

62.27 29.80 4.3944 -8.6193 35.9759 -0.0549 203.3624 86.2138

75.06 29.84 4.3591 -9.7270 37.7076 -0.0179 197.5555 99.1324

87.40 29.81 4.2430 -10.9743 39.0950 0.0850 187.5376 109.2362

99.99 29.77 4.1492 -11.9608 40.6420 0.0809 177.9788 118.4719

112.48 29.82 4.1958 -13.0763 42.8066 0.0665 172.7654 127.1844

124.86 29.79 4.1469 -14.0665 44.8761 -0.0910 166.8419 135.3630

133.16 29.80 4.0082 -14.4679 46.5603 -0.1000 161.3638 139.8783

175.38 29.48 3.2557 -15.4335 51.9799 -0.1183 133.8079 152.6120

188.06 29.52 3.1270 -15.5296 54.2381 -0.3068 126.2722 154.3934
200.24 29.51 2.9708 -15.3121 56.0134 -0.4757 118.3547 154.2632
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Q, = -20', V = 30 ft/s

Non-Dimensional Force and Moments (SNAME Axis Convention)

(O X Y' Z' K" M' N'
= ---

0.0000 0.12469 0.03941 0.90976 0.00013 -0.27845 -0.01913

0.1709 0 12943 0 13105 0.96614 0.00024 -0.28222 -0.05179

0.3450 O.13465 0.20240 1.03536 -0.00008 -0.26908 -0.09011

0.4285 0.12913 0.25327 1.05713 0.00007 -0.25428 -0.10780

0.5159 0.12775 0.28506 1.10504 0.00002 -0.24636 -0.12362

0.6013 0.12459 0.32226 1.14801 -0.00011 -0.23434 -0.13650

0.6888 0.12217 0.35217 1.19665 -0.00010 -0.22299 -0.14844

0.7735 0.12313 0.38372 1.25616 -0.00008 -0.21574 -0.15882

0.8595 0.12194 0.41361 1.31954 0.00011 -0.20876 -0.16937

0.9164 0.11778 0.42513 1.36814 0.00013 -0.20177 -0.17490

1.2200 0.09775 0.46340 1.56073 0.00015 -0.17097 -0.19499

1.3065 0.09364 0.46502 1.62413 0.00039 -0.16090 -0.196731

1.3915 0.08902 0.45882 1.67843 0.00061 -0.15091 -0.19670
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a1 = -14', V = 25 fl/s, Positive Rotation

Dimensional Forces and Moments:

V X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs in-lbs
- - -
0.00 25.00 2.3593 -0.3637 11.0793 -0.2315 118.9746 5.2151

50.13 25.15 2.1468 -0.1873 12.0240 -0.4143 119.1945 19.8490

62.54 25.12 2.2187 -0.1900 12.4948 -0.2749 116.9479 24.7597

74.89 25.16 2.2069 -0.2131 12.9181 -0.3648 115.0202 28.9395

87.43 24.99 2.1640 -0.2153 13.4082 -0.3277 110.8816 33.2202

99.90 25.07 2.132 -0.0992 142999 -0.3418 108.3303 36.7816

112.39 25.18 2.1140 0.1228 15.1658 -0.1307 105.8834 40.3816

124.94 25.15 2.1198 0.2798 16.0281 -0.3430 102.3409 44.0197

137.38 25.11 2.0655 0.4543 16.9207 -0.1895 97.5814 47.0065

149.79 25.08 2.1170 0.6891 18.1925 -0.3328 93.7642 48.9417

162.24 25.04 2.0804 1.0546 19.3723 -0.1990 89.9766 50.6473

174.85 25.17 2.0583 1.1420 20.6688 -0.1912 87.8205 52.8804

187.30 25.06 2.1453 1.3929 21.8235 -0.2175 83.5978 54.3327

199.88 25.13 2.1710 1.7954 22.9710 -0.2591 81.2250 56.5706
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= -14', V = 25 ft/s, Positive Rotation

Non-Dimensional Force and Moments (SNAME Axis Convention)
I

xf yp Z" K" M' N"

0.0000 0.09850 0,01518 0.46257 0.00041 -0.21138 -0.00927

0.4088 0.08857 0,00773 0.49605 0.00073 -0.20925 -0.03485

0.5106 0.09175 0.00786 0.51670 0.00048 -0.20579 -0.04357

0.6104 0.09097 0.00878 0.53251 0.00064 -0.20176 -0.05076

0.7175 0.09042 0.00900 0.56026 0.00058 -0.19715 -0.05907

0.8172 0.08852 0.00412 0.59371 0.00060 -0.19139 -0.06498

0.9153 0.08700 -0.00505 0.62417 0.00023 -0.18544 -0.07072

1.0188 0.08745 -0.01154 0.66123 0.00060 -0.17966 -0.07728

1.1220 0.08548 -0.f)1880 0.70028 0.00033 -0.17185 -0.08278

1 .2248 0.08782 -0.02859 0.75472 0.00059 -0.16552 -0.08640

1.3287 0.08658 -0.04389 0.80623 0.00035 -0.15935 -0.08970

1.4246 0.08478 -0.04704 0.85133 0.00034 -0.15393 -0.09268

1.5328 0.08914 -0.05788 0.90680 0.00038 -0.14781 -0.09607

1.6311 0.08971 -0.07419 0.94917 0.00046 -0.14282 -0.09947
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=-14' , V = 25 ft/s, Negative Rotation

Dimensional Forces and Moments:

V X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs in-lbs

0.00 25.00 2.3311 -0.1258 10.7966 -0.2803 119.0579 4.9293

25.01 25.12 2.2146 -0.1924 11.2166 -0.3202 121.5729 -9.1623

49.99 25.20 2.1628 -0.2097 11.7338 -0.5221 119.9938 -18.6229

62.57 25.18 2.1256 -0.2045 12.1380 -0.5368 117.8443 -23.1318

75.20 25.17 2.0386 -0.1631 12.5462 -0.5930 115.6808 -27.4298

87.42 25.15 2.0036 -0.2240 13.0628 -0.3885 112.6635 -31.5581

99.89 25.15 1.9862 -0.3090 13.8510 -0.5131 109.5740 -35.7383

112.36 25.18 1.9899 -0.2888 14.5891 -0.3202 106.8952 -38.6488

124.76 25.19 1.9411 -0.4733 15.4395 -0.5789 103.2240 -42.3514

137.53 25 20 1.8981 -0.6121 16.3070 -0.4262 99.1405 -44.6834

149.81 25.22 2.0000 -0.8555 17.4064 -0.6541 9).6590 -46.6318

162.54 25.16 1.8789 -1.0731 18.5559 -0.6544 91.4785 -48.4517

174.83 25.13 1.8371 -1.5472 19.6166 -0.5844 87.8058 -50.0444

187.59 25.17 1.8424 -1.9110 20.7705 -0.6725 84.6128 -51.6031

199.451 25.16 1.7601 -2.3692 21.8756 -0.7228 81.5450 -52.6280
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a, = -14' , V = 25 fl/s, Negative Rotation

Non-Dimensional Force and Moments (SNAME Axis Convention)
m m mm

X' Y1 Z" K' MA N'

0.0000 0.09733 0.00525 0.45077 0.00050 -0.21152 -0.00876

0.2042 0.09158 0.00796 0.46384 0.00056 -0.21393 0.01612

04068 0.08887 0.00862 0.48215 0.00091 -0.20982 0.03256

0.5096 0.08748 0.00842 0.49956 0.00094 -0.20638 0.04051

0.6127 0.08397 000672 0.51677 0.00104 -0.20276 0.04808

0.7128 0.08266 0.00924 0.53890 0.00068 -0.19778 0.05540

0.8145 0.08194 0.01275 0.57142 0.00090 -0.19236 0.06274

0.9151 0.08190 0.01189 0.60043 0.00056 -0.18721 0.06769

1.0157 0.07983 0.01946 0.63493 0.00101 -0.18064 0.07411

1.1192 0.07799 0.02515 0.67007 0.00075 -0.17335 0.07813

1.2182 0.08205 0.03510 0.71411 0.00114 -0.16700 0.08141

1.3248 0.07745 0.04424 0.76491 0.00115 -0.16046 0.08499

1.4267 0.07591 0.06393 0.81056 0.00103 -0.15439 0.08799

1.5284 0.07589 0.07871 0.85552 0.00118 -0.14830 0.09045

1.6257 0.07255 0.09766 0.90175 0.00127 -0.14304 0.09232
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c,= -, = 25 ft/s

Dimensional Forces and Moments:

Co v X Y Z K M N

RPM ft/s lbs lbs lbs in-lbs in-lbs in-lbs

0.00 25.00 1.9863 -0.0767 3.4095 -0.3790 80.1419 3.6989

24.80 25.16 2.1618 0.4343 3.8312 -0.3979 84.4368 1.3001

49.98 25.09 2.0907 0.8401 3.7424 -0.4012 84.3726 2.4721

62.65 25.14 2.0675 1.1172 3.8602 -0.4904 84.7644 3.2220

75.00 25.12 2.0189 1.4423 3.9817 -0.4864 84.6001 3.9571

87.52 25.11 2.0707 1.8278 4.1736 -0.5542 84.7622 4.4011

99.94 25.16 2.0728 2.1869 4.3494 -0.6486 85.4094 4.8563

112.54 25.13 2.0469 2.5681 4.6541 -0.6813 85.3669 5.3994

124.89 25.13 2.0621 2.8901 4.7967 -0.6348 85.4009 6.2727

137.47 25.14 2.0869 3.2998 5.0631 -0.6216 85.5469 6.9445

149.97 25.10 2.0590 3.9614 5.4368 -0.4451 85.6515 7.2211

162.17 25.10 2.1892 4.3835 6.2989 -0.5452 85.2166 7.5703

174.81 25.01 2.2065 4.7426 6.6110 -0.4609 84.6084 8.0544

187.18 25.04 2.2980 5.1863 7.0959 -0.5585 84.9933 8.4963

199.921 24.91 2.2402 5.6277 7.3972 -0.5405 84.1505 8.1367

Page 109



c= -8', V = 25 ft/s

Non-Dimensional Force and Moments (SNAME Axis Convention)

0'X Y' Z. K' M' N'

0.0000 0.08293 0.00320 0.14235 0.00067 -0.14238 -0.00657

0.2021 0.08911 -0.01790 0.15793 0.00070 -0.14811 -0.00228

0.4085 0.08666 -0.03482 0.15513 0.00071 -0.14883 -0.00436

0.5111 0.08536 -0,04613 0.15938 0.00086 -0.14892 -0.00566

0. 6123 0.08349 -0.05964 0 16466 0.00086 -0.14887 -0.00696

0.7148 0.08570 -0.07565 0.17273 0.00098 -0.14928 -0.00775

0.8146 0.08544 -0.09015 0.17929 0.00114 -0.14982 -0.00852

0.9184 0.08458 -0.10611 0.19231 0.00120 -0.15010 -0.00949

1.0192 0.08521 -0.11942 0.19820 0.00112 -0.15016 -0.01103

1.1214 0.08616 -0.13624 0.20904 0.00109 -0.15030 -0.01220

1.2253 0.08528 -0.16408 0.22519 0.00078 -0.15096 -0.01273

1.3250 0.09067 -0.18156 0.26090 0.00096 -0.15020 -0.01334

1.4334 0.09205 -0.19785 0.27580 0.00082 -0.15020 -0.01430

1.5330 0.09564 -0.21584 0.29532 0.00099 -0.15052 -0.01505

1.64591 0.09421 -0.23666 031108 0.00097 -0.15059 -0.01456
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Appendix D FORTRAN Routines

The following pages contain the FORTRAN routines used for obtaining the data pres-

ented in the study. Also included is the FFT algorithm used for the data analysis.
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$DEBUG
program DC

c ------------------------------ PROGRAM DC.FOR -----.-----.------
c
c --- Version: 1.2
c
c --- Date: 03 April 1989
c
c ---- Purpose: Main driver program that links with the following
c programs: Davlab, Common, DCDave and Calibr.For.
c This program is to obtain readings from the balance,
c store them (ac and dc), and convert the steady state
c components to forces and moments.
c Program for ROTATING measurements, DC forces
c and moments.
C
c ---- Programmer: Dave Johnson and Glenn Mckee
C
c Language: Microsoft Fortran 4.1
c
c ---- Variables:
c fdata(i): Raw MIT counts array filled with counts
c from all a/d channels. ("full" data)
c
c pdata(i): Raw MIT counts array with 6 preferred
c channels of a/d channels. Array values
c are later corrected for zeros and convair
c /MIT counts. This array is then mult.
c by a(i,j) for the balance loads.
c ("preferred" data)
c
c loads(i): Array with balance loads. loads(i) comes
c from the matrix multiplication of pdata(i)
c and a(ij).
C

c zerot(i): Row array with averaged counts for all
c a/d channels. This array is read by the
c subroutine "filter" to convert to the
c preferred 6 channels and put into zeros(i).
c
c a(ij): Coefficient matrix [B]. From (L - [B]IRI
c
c ---- Files:
c mrname: Raw MIT counts file with data from all
c a/d channels
c
c Ratio: fde of Convair R-cal/MIT R-cal readings for the
c 6 preferred channels.
c
c M2XIT.DAT: Balance coefficients for Roll bridge 2 and
c Axial bridge 1, referenced to C of Rot.
c
c "* Data Conventions Used in This Code ***
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C
c Index Readings() Loads()
c I Normal Force 1 Normal Force at center
c 2 Normal Force 2 Pitch Moment at center
c 3 Side Force 1 Side Force at center
c 4 Side Force 2 Yaw Moment at center
c 5 Selected Roll Bridge Roll Moment at center
c 6 Selected Axial Bridge Axial Force at center
c
c (The zeros() and ratioso vectors use the same conventions as
c the pdatao)
C
C---------------------------------------------------------------

real pdata(6), loads(6), zeros(6), ratios(6), fdata(9)
real zerot(9). dpc, rpmc, dp. rpma,iloads(6)
character*3 tcase, zcase
character* 11 zname. nane. mame.inane.calihr
character*80 id. header.headl,headc
character ans

common /dpcell/ rho, zero, full, tt
common /rpm/ rvz. rvcal
common /revsect/ nrev,nsect

c ---- open files
open (unit=lO, file = 'ratio' . status = 'old'

write (*,*)
write (*,*) ' * PROGRAM DC.FOR *
write (*,*)

cdb --- Debug commands for reading in Convair test case. This is to
cdb check the data reduction algorithm ......
cdb goto 52

write (*,*) Note: Zeros for this program are stored in the'
write(*,*) file zname. The program zero should be'
write(*,*) ' run first to get the proper DAILY zeros.
write (*,*)
write (*, ' (A\) ' ) 'Input the zero (counts) file name:
read (*,I) zname
write (*,*)

c --- Read in zeros from file zname
open (unit = 2, file = zname, status = 'old')
read (2,' (a80)') header
read (2,' (a80)') id
read (unit =2, fmt = 2, err = 51) zcase, (zerot(i), i = 1,9)
write (*,*)
write (*,*) ' Zeroes read in successfully!
write (*,*)

c- Debug command
write (*,*) zerot(I ).erot(9)
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goto 52
51 write (*,)

write (*,*) ' Error in reading zero file
goto 100

52 continue

c ---- Read in ratios from file of preferred channels (file "RATIO")
read (unit - 10, fmt = 6, err = 55) (ratios(i), i=1,6)
write (*,*)
write (*,*) 'Ratios read in successfuUy'

c ---- Debug command
write (*,*) ratios(1 ),ratios(6)
goto 56

55 write (*,*) 'Error in reading in ratios'
goto 100

56 continue

cdb --- Debug for reading in Convair test case.
cdb goto 57

c- Call filter subroutine for producing zeros(i)

call filtz (zerot,zeros)

57 continue

c ... assign a vacant FORTRAN unit number...
lunit = 3

c ... use the CONVAIR preferred set of coefficients (R2X 1)
item = 4
call intcoef( lunit. item )
Write (*,*) ' Coefficient Data has been read

c ... these are the A/D readings without applied external forces
call setzero( zeros )

c ... these are the ratios of the current signals divided by the ...
c ... original signal levels at calibration ...

call setrcal( ratios )

cdb --- Debug for reading in Convair test case ......
cdb goto 58

c ---- Offer option of either taking data or processing a previous
c run's data .....
70 write (*,*)

write (*,*) ' Do you wish to take new data or process'
write (*,' (a\)') 'old data ? (N/O):
read (*, fmt=9) ans
if (ans .eq. 'n') then

c ---- Calibrate or read from an old calibration file?
write (*,*)
write (*,' (a\)') ' Calibrate? (y/n):'
read (*,9) ans
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if (ans .eq. 'n') then
write (*,*)
write (*,' (a\)') 'Input old calibration file:'
read (*,I) calibr
open(unit=5, file=caibr,status='old')
read (5,' (a80)') headc
read (5,' (aO)') id
read (5,15) rho,zero,full,ttrvz,rvcal
close (unit=5)
goto 80

endif

c Call calibration routines.
call dpcal
call rpmcal

c --- write result of recent calibration to file Calibr....
write (**)
write (*,' (a\)') ' Input new calibration file:'
read (*,I) calibr
write(*,*) 'Type in new calibration file header:'
read (*.' (a80)') headc
open (unit=5.file=calibr)
write (5.' (aS0)') headc
write (5,17)
write (5,15) rho,zero, full,tt,rvz,rvcal
close(unit=5)

80 write (*,*)
c ----- write (*,' (a\)') ' Input # of revolutions, nrev:'
c ----- read (*.3) nrev
c ----- write (*,*)

write (*,' (a\)') 'Type in tcase (3 max):
read (*,' (a3)') tcase
nsect = 32
nrev = 10

c ------- Go to data taking subroutine
Call takedata (fdata.dpc,rpmctcase,header)
write (*,*) ' takedata finished'
write (**)

c ------- debug command
cdb pause

goto 62
endif

cdb --- Debug for reading in Convair test case or for inputing
c previous run file ....
58 continue

write (*,*)
write (*,' (A\)') 'Input PREVIOUS (DC) raw counts file:
read (*,I) maine
write (**
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open (unit=9, file = marne, status = 'old')
read(9,' (a80)') header
read(9,' (a80)') id
read (unit=9,fmt= 18,err=61) tcase,(fdata(i), i= 1,9),dpcrpmc
write (*,*) ' Previous counts ......
write (*,*) fdata(1), rpmc

c Read in old calibration file ............
write (**)
write (*,' (a\)') ' Input old calibration file:'
read (*,1) calibr
open(unit=5, fie=calibr,starus='oid')
read (5,' (a80)') header
read (5,' (aS0)') id
read (5,15) rhozero,fulltt,rvz,rvcal
close (unit=5)

cdb do 60 j = 1.6
cdb zeros(J)=O.0
cdb60 continue

goto 62

61 write (*,k) 'Error in reading Previous counts....'
goto 100

62 continue

c ** -* '*** Data Reduction Portion *************************

c ---- Call filter subroutine to reduce the readings to the preferred
c 6 channels (i.e. read in data to pdata(i))

call fiter(fdata. pdata)

write (**) 'filter done'
c ---- debug command
cdb pause

write (*,*)
write (*,*) " Now Processing Data!!!
write (*,*)

c ... adjust the values by removing the zeros and compensating
c ... for the ratio of the signal level ...

call doadjus( pdata )

call doload( pdata. loads, ierr
if( ierr .ne. 0 ) then

write(6,12) tcase
endif

20 continue

c- Convert dpc and rpmc counts to velocity and rpm...
call rpmvel(dpc.rpmc,dprpma)

c ---- Write loads to screen
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write (*,*)
write (*,*) ' Loads for this run...
write (**)
write (*,10)
write (*,7) tcase, (loads(i) , i=1,6),dp,rpma

c ---- Ask if INERTIA run or HYDRO run. This determines whether or not
c the inertial forces are subtracted out from the above loads .....
75 write (*,*)

write (*,' (a\)') ' Is this an inertial or hydro run? (i/h):'
read (*,9) ans
if (ans .eq. 'h') then

write (*,*)
write (*,' (a\)') 'Input Inertial FORCE & MOMENT file:'
read (*,' (a 1)') iname
open (unit=6, err=75,file=iname,status='old')
read(6,' (a80)') headl
read(6,' (a80)') id
read (6.16) tcase,(iloads(i). i= 1,6)
close(unit=6)

c ------- Do Load subtraction ........
do 85 i=1,6

loads(i )=loads(i)-iloads(i)
85 continue

endif

c- Write loads to file lname .........
write (*, ' (A\) ' ) ' Input the load output file name:
read (*,1) )name
write (*,*)

open(unit=7, file = lname, status = 'new')
c ----- write (*,*) ' Input header for load file ... .
c read (*,' (a80)') header

write (7,' (a80)') header
write (7,10)
write(7,7) tcase. (loads(i). i=1.6),dp.rpma

c ---- Write loads to screen again ..........
write (*,*)
write (*,*) ' Final loads for this run...
write (*,*)
write (*,10)
write (*,7) tcase, (loads(i) , i=l,6),dprpma

write (*,*)
90 write (*, ' (A\)' ) 'Would you like another test run? (y/n):

read (*,frnt =9, err = 90) ans
m--m+ I
if (ans .EQ. 'y') goto 70

c Form at Statem ents ........................
I format(A I I)
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2 format (A3, 9F7.1)
3 format (12)
6 format (6F8.4)
7 format (A3, 6F9.4,2f9.2)
9 format (A I)
10 format('TC',4X,'Z',8X,'M',8X,'Y',8X,'N',8X,'K',

+ 8X,'X',8x,'VEL',6x,'RPM')
12 format(' Convergence problem on point ',A 10)
15 format (6f9.5)
16 format(a3,6f9.4)
17 format (3x, 'Rho',6x,'Zero',5x,'Full',6x,'Tt,6x,'Rvz',

+ 6x,'Rvcal')
18 format (a3,11F7.1 )

c- Close all remaining open files .....
close(unit = 10)
close(unit = 7)
close(unit = 1)
close(unit = 2)

100 continue
end
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$DEBUG

c ---------------- PROGRAM DCDAVE.FOR --------------------
c
c Version: 1.2
c
c ---- Note: Full Revolution Version, Therefore nrev=10 max!
C
c ---- Date: 29 March 1989
c
c Purpose : To provide the collection of subroutines necessary
c for rotating data taking and DC processing. This
c program is for linking with the main driver program
c DC.FOR.
c
c ---- Programmer: Dave Johnson
C
c Language: Microsoft Fortran 4.1
c
c --- Subroutines:
c TAKEDATA: Primary rotary data collection sub-
c routine
c
c FILTER: Reduces readings to the preferred 6
c channels for later processing
c
c FILTZ: Reduces zero readings to 6 preferred
c chanels for later processing
c
c RPMVEL: Converts dp and rpm counts to actual
c tunnel velocity and model rpm

SUBROUTINE TAKEDATA(fdata,dpcrpmc,tcase,header)

c -------------------------- SUBROUTINE TAKEDATA ---------------------
c
c --- Arrays: fdata(i,j): Averaged (over nsamp) raw MIT counts
c for all 9 a/d channels of balance data.
C
c iarray(i): Row array filled by EACH mcbatod call
c
c tarray(ij): Temporary array with rows of iarray
c and columns of nrev*nsect samples
c
c bigarray(ij): Summed counts array that is divided
c by nsamp and written to tares(ij)
c
c dpc(i): Raw MIT counts read from dpcell
c
c rpmc(i): Raw MIT counts read from daytronix chan C
c
c ---- Files: RCxxxx.xxx: Raw data file in MIT counts.
C
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C --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c -- Dimensions set for max of 32 sectors/rev x 10 revs = 96 data pts
c and max of I I channels sampled at 3 samples/channel ......

integer*2 iarray(33), tarray(320,33), nval, n, m, nsamp
integer*2 nchan, echan, k
real rfdata(320,9), bigarray(320,1 1), frpmc(320), fdpc(320)
real rpmc,dpcrpma,dp,sum 1 (32,1 ),fdata(9)
character* I I mame,rsum,tsum
character*80 header
character*3 tcase

common /revsect/ nrev, nsect

nchan = 11
echan= 10

c- Setclock set for lkHz
call mbopen
call setclock(.001,l)

c --- Input data counts filename and # of samples to be taken at
c each data point .....

write (*,*)
write (*,*) 'Format for Raw Cts File is RCxxxxx.xxx
write (*,*) 'where xxxxx.xxx is tst case, V, alpha, rpm'
write (
write (*, '(A\) 'Input Raw Counts Output Filename:
iead (* 5) marne
open (unit = 1, file = marne)

write (*.*)
c ----- write (*,*) ' Before entering # of samples per data point,
c .....- write ,*,*) 'remember that for any high speed data taking,'
c ----- write (**) nsamp should not be > I.
c ----- write (*,*
c ----- write (*, " (A\) ') 'Input # of samples for each data point:
c ----- read (*, 6) nsamp

nsamp = 1

write (*,)
pause 'Press any key to start data taking ....... .

c ---- The following logic is based on inputs to the digital input
c pons #0 and #1 being 32(0) and l/rev(K) pulses respectively.
c The elaborate if-then statements ensure that the data taking
c actually starts at 0 degrees and counts for nrev revolutions.

c Initialize counters ......
n=O

m=O
k=O

call dma(nval
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c ---- If the following expression is true, then K is low....
100 if (nval .le. 1) goto 200

call dina(nval)
goto 100

c ---- If the following expression is true, then K is high and thus
c the model is at 0 degrees. Now start counting 32 times for 1
c revolution and then start taking data on 33rd count ......
200 call dina(nval)
250 if (nval .ge. 2) goto 290

call dina(nval)
goto 250

c ---- Start counting 32 times off J trigger
290 call dina(nval)
300 if ((mod(nval,2)) .EQ. 1) goto 400

call dina(nval)
goto 300

400 n = n +
if(n .EQ. 32) goto 500

c ---- Look for J low. ....
450 if ((mod(nval,2)) EQ. 0) goto 290

call dinainval)
goto 450

c --- Look for J low before taking data ....
500 if ((modinval.2)) EQ. (0 goto 600

call dina(nval)
goto 500

c --- Look for J high to trigger data taking. This ensures start at
c 0 degrees....
600 call dina(nval)
650 if ((mod(nval,2)) .EQ. 1) goto 700

call dina(nval)
goto 650

c --- Now at 0 degrees, begin taking data ........
700 call mcbatod (0,echanl,nsamp, iarray)

m = m+l

c --- Throw temporary data into tarray to prevent overwrite of data ....
do 750 i=l. (nsamp*nchan)

tarray (m.i) = iarray (i)
750 continue

c ---- Exit condition. exit loop after nrev revs of data taking (10 max)
if (m .EQ. (nrev*nsect)) goto 755

c Look for J low, if I is low. go up to top of loop and look for
c I high again. This prevents multiple triggers off the same
c pulse, especially important for slow rpm runs .......
751 if ((mod(nval.2)).EQ. 0) goto 600
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call dina(nval)
goto 751

c--Done taking data, now put into proper arrays and store in file....
write (*,*)
write (,)'Done taking data..
write(*)

c--Fill array bigarray(ij) with zeroes ..
755 do 760 i= 1, (nrev*nsect)

do 760Oj= 1, (nchan)
bigarray(ij) = 0.0

760 continue

c--Place sum of nsarnp number of data points in each storage bin ..
765 do 780 i = 1, (nrev*nsect)

do 780Oj= 1. nchan)
bigarray(i,j) = bigarrav(ij) + tarray(i, (j+(nchan*k)))

78(0 continue

k = l
if (k .EQ. nsamp) goto 781
goto 765

781 continue

c-Next, divide the samples by nsamp and put in arrays rfdata(ij),
c fdpc(i) and fr-pmc(i)

do -91 i = 1, knrev*nsect)
do 79Oj = 1, 9

rfdata(ij) = bigar-ray(ij)/nsamp
790 continue

fdpc(i) = (bigarray(i.10))/nsanip
frpmc(i) = (bigarray(i,lI I ))/nsamnp

791 continue

---- Finally', put data values into the data file mane ...
write (*.*)
write (i*,*) ' Type in file Header...
read (*,' (a80)') header
write (1.' (a80)')header
w'rite (1,14)
do 795 i = 1, (nrev*nsect)

write (1, 15) (rfdata(ij) , j = 1.9), fdpc(i), frpmc(i)
795 continue

c----------------- DATA HAN2DLING --------------

c--Sum up nrev points into 1 rev or data and put into Mie..
c Fill sum I, fdata, dpc, and rpmc with zeros ..

do82i= 1, 11
do 82 j = 1, nsect

sumI 0J) = 0.0
82 continue
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do 81 i= 1,9
fdata(i)--O.O

81 continue
dpc = 0.0
rpmc = 0.0

c ---- First do balance counts ....
k=O

83 do 85 i = 1,9
do 85 j = 1, nsect

sum I (jJi) = sum (j,i) + rfdata(j+(nsect*k),i)
85 continue

k=k+ I
if (k .eq. nrev) goto 86
goto 83

86 continue

c- Now do dp and rpm measurements .....
k=0

89 continue
do 90 j = l,nsect

sumi 0,1 0) = suml 0. 10 +fdpc(j+(nsect*k))
sumI (j.1 1 = sum 1(j.11 ) + frpmc(j+(nsect*k))

90 continue
k=k+ 1
if(k eq nrev) goto 91
go to 89

c Divide by nrev for averaged values over I revolution
91 do 110 i=l, 11

do 110 j = 1, nsect
suml(j,i) = suml(j,i)/nrev

110 continue

c Now sum up over remaining revolution for averaged counts
do 95 i= 1,9

do 95 j = 1, nsect
fdata(i) = fdata(i) +suml(j,i)

95 continue

c ---- Again, do dp and rpm ....
do 105 j = 1 , nsect

dpc =dpc + sum(j,10)
rpmc = rpmc -t- sum (j.11)

105 continue

c --- Divide by nsect ......
do 120 i=1.9

fdata(i) = fdata(i)/nsect
120 continue

dpc = dpc/nsect
rpmc=rpmc/nsect
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c ..... Write sum I and fdata, dpc, rpmc, to files...
write (*,*)
write (*, ' (A\)') ' Input summed (over 1 rev) file:
read(*,l) rsum
write (*,*)
write (*,' (A\)') 'Input TOTAL summed counts output file:
read (*,1) tsum
open (unit = 15, file = rsum, status = 'new')
open (unit = 16, file = tsum, status = 'new')
write (15,' (a80)') header
write (16,' (a80)') header
write (15,14)
write (16,10)
write (16,7) tcase,(fdata(i), i = 1,9),dpc,rpmc
do 130 j = 1,nsect

write( 15,15) (suml (Iji), i = 1.11)
130 continue

c ---- FORMAT statements .............
I format (a 1)
5 format (a 11)
6 format (12)
7 format (a3,1 lf-. I)
10 format('TC',4x,'N1 ',5x,'N2',5x,'Y 1',5x,'Y2',5x,'R1',

+ 5x,'R2',5x,'X1 ',5x,'X2',5x,'X3',Sx,'DP',4x,'RPM')
14 format(3x,'N1,',Sx,'N2',5x,'Y1,',5x,'Y2',5x,'R1 ',

+ 5x,'R2',5x,'X1 ',5x,'X2',5x,'X3',5x,'DP',5x,'RPM')
15 format (11F7.1 )

1000 continue
close (unit = 1)
retum
end

subroutine fdtz(zerot.zeros)

c ----------------------- SUBROUTINE FILTZ --------------------
real zerot(9), zeros(6)

do 30 i= 1,4
zeros(i) = zerot(i)

30 continue
zeros(5) = zerot(6)
zeros(6) = zerot(7)

return

end

subroutine fdlter(fdata, pdata)
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c -------- SUBROINE FILTER --------- -----

c--Date: 16 Feb 1989

c--Purpose: Filter subroutine to take all channels of data and read
c in the 6 preferred channels for processing by Mairnst.
C
c--Variables:

c fdata(i): array with al] channels of data (11)
c pdata(i): array with 6 preferred channels of
c balance data.
C
C ------------------------------------------------------------------

real pdata(6),fdata(9)
c-debug command
cdb write (** Have reached subroutine filter'
cdb pause

c--Do test reading conversion
do 10 i=1,4

pdata(i) = fdata(i)
10 continue

c--debug commnand
cdl' write (*,*) ' First 4 points read in successfully

pdata(5) = fdata(6)
pdata(6)= fdata(7)

return
end

subroutine rprnvel (dpc, rpmc, dp, rpma)

c ------------------------ SUBROUTNE RPMVEL----------------

c--Purpose: To convert dpcell and rpm readings to actual
C velocities and rpm's.
c
c -------------------------------------------------------------

real dpc, rpmc, dp, rpma
commnon /dpcell/ rho,zero,full,tt
common /rpm/ rvz~rvca]

c--Convert dp counts to voltages and convert to ft/sec
c using 409.6 counts/volt and Lisa's function dpspeed ....

dpc = (dpc)/409.6
dp = dpspeeddpc)
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c --- Convert rpm counts to rpm's
rpmc = (rpmc)/409.6
rpma =(revs(rpmc))*60/512

return
end
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c -----------------------.Program DAVLAB.FOR --.---------------- ----------
0 0:C C subroutine doload( pdata, loads, ierr)* D U C 4

( -c...------------- Subroutine doload ----------------------.----

(( real pdata(6), loads(6)
finteger ierr

C C c 4*** The subroutine takes the readings corrected for zeros and ***e - c and scaling, and then converts them to equivalent loads
c using a linear 6th order fit determined by the Davidson
c Laboratory MCB program.

common /convair/ a(6,6)

c ... there is no possible error in this case ...
ierr = 0

c ... do the matrix multiplication ...
do20 i= 1,6

loads(i) = 0.0
do 10j= 1,6

loads(i) = loads(i) + a(j,i)*pdataQ)
10 continue
20 continue

c ... done, so return ...
return
end

C ------------------------ Subroutine intcoef ---------------------------

.... subroutine intcoef( runit, item
0( ( integer runit, item

Q ' ( ( ., 4 I C c *** Subroutine to obtain the necessary information from a fi
c and to store it for later use of the conversion routines.

*o at ('.j, c RUNIT: An available FORTRAN unit number for re.
c datafile

c ITEM: The set of coefficients selected for use in the
c conversion routine.
c ITEM # Selection
c Roll Bridge Axial Bridge
c I I 1
c 2 1 2
c 3 1 3
c 4 2 1
c 5 2 2
c 6 2 3
C
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character*80 id
character*9 name(6)
common /convair/ a(6,6)

data name/'M1XIT.DAT', 'M1X2T.DAT', 'MIX3T.DAT',
I 'M2XIT.DAT', 'M2X2T.DAT', 'M2X3T.DAT'/

c *** attempt to open the data file ***
open( unit=runit, file = name(item), status = 'old', err=- 70)

c *** insure that zero is the default valu***
do l0i= 1,6

do 10j= 1, 6
a(i,j) = 0.0

10 continue

c *** read the contents of the file *
read(runit.15) id

15 format(a80)
do20 i= 1,6

read(runit,*,end=25,err=-25) ( a(ij), j=1, 6)
20 continue

goto 30
25 print *,' ERROR - Trouble reading Coefficient Data'

return
30 continue

cdb write(6,40) id

c --- debug commands
c open (unit = 6, file = 'loadcoef', status = 'new')
c 40 format(1x,a80)
c do60i= 1,6
c write(6,50) i, (a(ij), j=1,6)
c 50 format(lx,i4,6f12.6)
c 60 continue
c ---- debug command
c close (unit = 6)

close( runit )
return

70 write(6.80) name(item)
80 format(5x,'ERROR - Data file ',a9,' can not be read'/

1 5x,' All coefficients are zero'//)

end

- 128-



c ------------------------ Program COMMON.FOR -----------------

c ------------------------ Subroutine doadjus ------------------------------
subroutine doadjus( pdata)
real pdata(6)

c *** This subroutine takes the current readings, corrects for the ***
c readings for zero applied load, and then scales the result
c back to the levels at which the calibration was done. The
c returned values should be the bits that would be read at
c CONVAIR calibration bench.
c ********************************************************************

common /convarl/ zero(6), rcal(6)

do 10 i = 1,6
c ... remove the zero first ...

pdata(i) = pdata(i) - zero(i)
pdata(i) = pdata(i)*rcal(i)

10 continue

return
end

c -------------------------- Subroutine setzero ------------------------

subroutine setzero( zeros)
real zeros(6)

c * This subroutine takes zero applied load readings and stores *
c them for later use ***

common /convarl/ zero(6), rcal(6)

do 10i= 1,6
zero(i) = zeros(i)

10 continue

return
end

c ---------------------------- Subroutine setrca --------------

subroutine setrcal( ratios)
real ratios(6)

c *** This subroutine takes calibration signal ratios and stores *
c *** them for later use * * *

common /convarl/ zero(6), rcal(6)

do 10i= 1,6
rcal(i) = ratios(i)
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10 continue

return

end
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$DEBUG

c ----------------------- Program CALIBR.FOR ----------------

c This program contains the calibration subroutines for calibrating
c the dpcell and rpm channel.

SUBROUTINE DPCAL
c

c Calibrates the differential pressure cell.
c Stores the calibrations "zero", and "full"
c in the common block called "dpcell".
c

C

c After calling DPCAL once in your program,
c a special function exists in the MIL library
c that you can use to convert voltages from
c the Daytronics channel C to velocity. It
c is called "dpspeed", and has one calling
c parameter, "voltage".
C

c
c Example:
c
c call dpcal
c

C

c
c <do an A/D conversion on channel 2 (Daytronics C)>
c freestream=dpspeed(voltage)
C

c .etc
c
c You do not have to include the common block in your
c main program to make these routines work
c
c Lisa Shields
c June 12, 1987

common /dpcell/ rho,zero,full, tt
integer*2 channel.ig.ival
character ans, line*70

write(*,*)
write(*,*)' Welcome to Dpcal!'

10 write(*,*)

write(*,'(A\)') ' Please input water temp (deg f):
read(*,*,err- 10) tt
rho=1.9574-0.00028*"tt

100 FORMAT(5x,a70)
write(*,*)

99 write(*,*1
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line='The dpcell should be connected to the Daytronic channel c'
write(*, 100) line
write(*,*)
line='The span and balance should be set such that the digital'
write(*,100) line
line='display reads from -820 (zero flow) to +600 (with'
write(*, 100) line
line='the "-cal" button depressed.)
write(*. 100) line
write(*,*)
write(*,*)
write(*,*)
write(*,101)

101 format(5x,'Please hit return after checking this ',\)
read(*,104) ans
write(*,*)
line='Sampling zero flow voltage for 5 seconds and averaging'
write(*,100) line

call mbopen
call setclock(O.01,O)
zero=O.O
channel=9
ig= 1
do 110. i=1,500
call atodtk(channel.ig.ival)

110 zero=zero + ival
zero=zero/500.0/409.6

write(-*' .* )

line='Sampling finished.*
write(*,100) line
write(*,*)
write(*,*)

line='Now please press the "-cal" button and hold it down'
write(*.100) line
write(*, I I I)

Il format(5x,'for 5 seconds. Hit return when ready',
A ' to do this.',\)

read(*,104) ans
write(*,*)
write(*,*)
line='Sampling simulated full scale speed and averaging'
write(*, 100) line

call setclock(O.01,0)
full=O
do 120 i=1,500
call atodtk(channel,igival)

120 full=full + ival
full=full/500.0/409.6

write(*.*)

line='Sampling finished.'
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write(*,100) line
write(*,*)
write(*,*)
write(*.102) zero, full

102 FORMAT(5x,'Zero voltage: ',F6.3,' Full scale voltage: ',F6.3)
write(*,*)

write(*,'(A\)')' Accept these? (y/n):
read(*,104) ans
if(.not.((ans .eq. 'y') .or. (ans .eq. 'Y'))) goto 99
write(*,*)
RETURN

104 format(a)
END

c ------------------- Subroutine RPMCAL ------------------------

Subroutine rpmcal
common /rpm/ rvz, rvcal
integer*2 channel
character ans* 1

c This subroutine is used to calibrate the Daytronics
c channel B, used to record propeller rpm data

write(*,*)
write(*,*)

5 write(*,10)
10 format(Ox,'Welcome to the RPM (Channel B)',

A 'calibration routine.')
15 write(*,*)

write(*,*)
write(*,20)

20 format(15x,'A: Set Zero to read 000')
write(*.30)

30 fonnat(15x,'B: Push cal button, adjust span to 1500')
write(*,*)
write(*,*)
pause ' With propeller stopped, take time to do this now!'

write(*,*)
write(*,*)
write(*,40)

40 format(lx,'Hit any key while holding down channel B',
A ' cal button for 5 seconds:')

read(*,41) ars
41 format(a)

channel= 10
rvcal=average( .05 ,channel)

write(*,*)
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write(*,*)
write(* ,50)

50 format(lx,' Please release cal button, and hit any'.
A ' key to take rpm zero: ')

read(*,41 ) ans

rvz=average(O.05 ,channel)

write(*.*)
write (*,55) rvz.rvcal

55 format (2x,'Rvz = ',f7.4,5x,'Rvcal = 'J7.4)
write (*,*)
write(*,' (a\)) ' Do you wish to recalibrate? (y/n):
read(*,41 ) ans
if (ans .ne. 'n') goto 5
return
end
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c ------------------- Program DCZero.For ---------------------------------
C
c ---- Version: 1.1
c
c ---- Date: 29 March 89
C
c ---- Pupose: To take static balance readings at different points around
c the circle and store them for later use as a zero reference
c file. The data taken here represents the weight ( or W-B
c if done in water) effect AND the offsets of the balance.
c

c ---- Programmer: Dave Johnson
c
c ---- Language: Microsoft Fortran 4.1
c
c ---- Varibles:
c iarray: row array in DMA filled by each MCBATOD
c call.
c
c zerot: array with averaged counts for all
c channels. This array will be read by
c the subroutine filter to convert to the
c preferred 6 channels and put into zeros(i).
C
C----------------------------------------------------------------

integer*2 iarray( 1000).bchanechannsamp.nchan,n,nsect
real zerot(32.9), angle, sum(9)
character* 11 fname, dcname
character*3 tcase
character*80 header
character* 1 ans
nsect = 32
bchan = 0
echan = 8

write (**)
write (*,*) ' * Welcome to DCZero! *
write (**)

c --- Input zero filename
write (*,*)

1 write (*, ' (A\) ') 'Type in name of zeroes file (11 char max):
read (*,' (A 1 ) ', err = I) fname
open (unit = 1, file = fname)
write (*,*)
write (*,*) 'Type-in file header ...... (80 char max):'
read (*,' (a80)') header
write (1.' (a80)') header
write (1,2)

c ---- fill zerot(j.i) with zeros
do 50 j= 1 ,nsect

do 50 i=l,nchan
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ze ot(ji) = 0.0
50 continue

angle = 0.0

c- Input Test case number
write (*,*)
write (*, ' (A\) ') 'Type in test case (3 chk. max):
read (*,' (A3) ') tcase

c ---- Setclock set for 100Hz

call mbopen
call setclock(.01,1)

write (*,*)
write (*,' (A\) ) 'Input Number of samples (e.g. 100):
read (*,6) nsamp

write (* *)

20 pause ' Press enter to start taking of zeroes

c ---- Take Zeroes! -----------------------

call mcbatod (bchan,echan.1 ,nsamp,iarray)

c calculate number of channels sampled
nchan= (echan - bchan) + I
k=O
n=n+ I

c --- read in data to zerot(ni)
55 do 60 i=l, nchan

zerot(n,i) = zerotni) + iarray(i+(nchan*k))
60 continue

k=k + 1
if(k .EQ. nsampi goto 71
goto 55

71 continue

c ---- Next, divide the values in zerot(n,i) to get averaged values
do 80 i=l,nchan

z"erot(n,i) = (zerot(n,i))/nsamp
80 continue

c ---- write zerot(n,i) to file fname and to screen ......
write (1,7) angle, (rzrot(n,i), i=l,nchan)
write (*.*)
write (*,2)
write (*,7) angle. (zerot(n.i), i=l,nchan)
write (**)

angle = angle + 11.25
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c --- Check to see if another run is next ....
if (n .eq. 32 ) then

write (*,*)
write (*,*) 'N = 32 !, One full revolution has been done'
write (**)

endif
write(*,' (a\)') 'Another run? (y/n):'
read (*,' (al)') ans
if (ans .eq. 'y') then

goto 20
endif
close (unit= I)

c ---- Next sum up all points/chan and put in dc 'zero' file ....
do 90 i=1,9

sum(i)=0.0
90 continue

do 96 i=1,9
do 95 j= I ,nsect

sum(i)=sum(i) + zerot(J,i)
95 continue

sum(i )=(sum(i))/nsect
96 continue

c --- Write to file..
write (**)
write (*. (aV) 'Type dc counts output f'I. name:
read ( (al 1)') dcname
open (unit=2.ffle=dcname.status='new')
write (*,*) ' Input header for summed file ......
read (*,' (a80)') header
write (2,' (a80)') header
write (2,3)
write (2, 4) tcase, (sum(i). i=1,9)
close (unit=2)

c ---- FORMAT statements
2 format ('Angle',3x,'Nl ',5X,'N2',5X,'Yl ',5X,'Y2',5X,'RI',

+ 5X,'R2',5X,'X I ',5X,'X2',5X,'X3' )
3 format ('tcase',lx.'Nl ',5X,'N2',5X,'Yl ',5X,'Y2',5X,'RI',

+ 5X.'R2',5X,'Xl',5X,'X2',5X,'X3')
4 format (a3,9f7.1)
6 format (14)
7 format (f6.2.9F7.1)

end
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$DEBUG
c - Program FFT .............. --------------
C
c ---- Version: 1.3
C
c ---- Date: 27 April 89
C
c ---- Programmer: Dave Johnson
c
c Language: Microsoft Fortran 4.1
C
c ---- Purpose: To perform a fast fourier transform on coning
c motion test data.
C
c ---- Subroutines:
c

c FAST: Performs the FFT and outputs the Fk's
C

C ------------------------------------------------------------------

complex x(320)
integer npowndim.nreal.nread
real one. xreal.mag(320 ).freq(160).delta.rpm
character* 11 fname. outname,gname

one = -1.0
ndim = 320

c ---- Input NPOW, the power of 2 that equals the # of data points..
write(*,*)
write(*,' (a\)') ' Input power, n, such that 2An = # data pts:
read (*, 5) npow
nread = 2**npow
write(*.*)
write(*,' (a\)') ' Input the RPM data was taken at:
read(*, 6) rpm
delta = 60/(32*rprn)
write(*,*) delta

c ---- Input Data file name .....
write (**)
write (*,' (a\)') ' Input name of data file:
read (*,' (al l )') fname

c ---- Read in data from file fname .....
open (unit=1 ,err=-20,file=fname,status='old')
do 15 i=1,nread

read (1,*,end=25) xreal
x(i)=cmplx(xreal,0)

15 continue

goto 30
20 write(*.*) ' Error in opening file'

go to 100
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25 write (*,*) 'Error in reading file'
goto 100

30 continue

c ---Call FFT subroutine....
call FAST(xndim,npow,one)

c --- Write FFT data to output file...
write(* ,*)
write(*,' (a\)') 'Input FFT output file name:
read (*,' (a11)outname
open (unit=2,file=outname ,status= 'newh')
write(2,10) outname
write(2,9)
do 40 i=l,nread

mag(i )=cabs(x(i))
write(2,12) x(i).mag(i)

40 continue

c --- Create data file for Grapher plot..
write (*,*)

write (*'(a\)') 'Input Grapher Data file name:
read (''(all1)') gname
open (unit=3,file=gname.staius='new )
write (3,13) O.,mag(l)
do 50 i=2, (nread/2)

freqWi=(]-l )/(nread*delta)
write (3,13) freq(i),(2*(mag(i)))

50 continue
write (3,13) (freq(nread/2)+freq(2)). mag(nread/2 + 1)

c --- Format statements ..
5 forrnat(i3)
6 format(f5.0)
9 format(6x,'ReaI '9x,'Imag. ', 14x,'Magnitude')
10 formnat(2x,' FET Output File: ',A II)
121 format(2x,f12.3,4x~flO.3, 9x, f12.3)
13 formnat(2x,f6.3,5x,f 12.3)

close(unit=l)
close(unit=2)
close(unit=3)

100 continue
end
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c This is the fft routine. I'll give you the meaning of 'ONE'
c later...

SUBROUTINE FAST(X,NDIMNPOW,ONE)
C
C IMPLEMENT THE FAST FOURIER TRANSFORM
C

IMPLICIT REAL(A-H,O-Z),INTEGER(I-N)
COMPLEX T,U.,WX(NDIM)
DATA P1/3.1415926535897932384/
NI =2**NPOW
N2=NI/2
N3=Nl-1
J= I
DO 300 I=I.N3
IF(I.GE.J) GO TO 100
T= X(J)
X(J )=X(I)
X(I )T

100 K=N2
200 IF(K.GE.J) GO TO 300

J=J-K
K =K /2
GO TO 200

300 J=J+K
DO 500 L--1.NPOW
LEI=2**L
LE2=LE 1/2
A1NG=PI/LE2
U=CMPLX(1.,0.)
W=CMPLX(COS(ANG ),ONE*SIN(ANG))
DO 500 J=l,LE2
DO 400 J=J,NI ,LE I
IP=I+LE2
T= X(IP)*U
X(EP)=X(l)-T

400 X(1)= X(I)+T
500 U=U*W

IF(ONE.EQ.1 .)RETURN
SCL-- I./REAL(NI)
DO 600 I=lI,N I

600 X(I)=X(I)*SCL
RETURN
END
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